Based on spatially and temporally resolved numerical solutions to the relativistic quantum field equations, we provide a resolution to the controversial issue of how an incoming electron scatters off a supercritical potential step and how the electron-positron pair production is affected by this collision. The treatment of the problem as a correlated three-particle problem suggests revealing insight into the process.
Using space-time resolved solutions to relativistic quantum field theory we analyze the electron-positron pair creation process from vacuum. For early times the entangled electron-positron wave function can be obtained analytically. We show that there are, in principle, no limitations to the localization length of an electron and demonstrate that its spatial probability density can be much narrower than the Compton wavelength. We also find that quantum field theory prohibits the occurrence of Zitterbewegung for an electron.
Using space-time resolved solutions to relativistic quantum field theory, we analyze the electron-positron creation process from vacuum in the long-time regime in which multiple pairs are produced. We find that for a supercritical potential of finite extension, the time dependence of the production rate of pairs is described by four distinct regimes that have their direct counterparts in the time evolved spatial density of the particles. These regimes include the shape-invariant birth process, an entanglement-induced reduction of interference, a recurrent Pauli suppression of pair production induced by electron-potential scattering, and finally a production halt associated with a population of supercritical and a partial population of subcritical bound states.
The time-dependent Dirac equation is solved numerically on a space-time grid for an atom in a strong static magnetic field and a laser field. The resonantly induced relativistic motion of the atomic electron leads to a ringlike spatial probability density similar to the features that have been recently predicted ͓Wagner, Su, and Grobe, Phys. Rev. Lett. 84, 3282 ͑2000͔͒ based on a phase-space method. We further demonstrate that spin-orbit coupling for a fast-moving electron in such an atom becomes significant and the time dependence of the spin can dephase even if initially aligned parallel to the direction of the static magnetic field.
In the context of superluminal propagation of wave packets through potential barriers, the tunneling speed is usually characterized by the Wigner velocity. We propose an alternative speed that takes into account the interference between the incoming and the reflected waves and leads to a better estimation of arrival time for a wave packet entering the tunneling region. This arrival time is derived by an extrapolation from inside the barrier. The analytical theory is based on the stationary phase approximation whose validity is justified by a comparison with the numerical solution of the time-dependent Dirac equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.