Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. in recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. in addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. with age, neurodegenerative changes in the brain of OXYS rats become amplified. we have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMDlike retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD.
Pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, remains poorly understood due to the paucity of animal models that fully replicate the human disease. Recently, we showed that senescence-accelerated OXYS rats develop a retinopathy similar to human AMD. To identify alterations in response to normal aging and progression of AMD-like retinopathy, we compared gene expression profiles of retina from 3- and 18-mo-old OXYS and control Wistar rats by means of high-throughput RNA sequencing (RNA-Seq). We identified 160 and 146 age-regulated genes in Wistar and OXYS retinas, respectively. The majority of them are related to the immune system and extracellular matrix turnover. Only 24 age-regulated genes were common for the two strains, suggestive of different rates and mechanisms of aging. Over 600 genes showed significant differences in expression between the two strains. These genes are involved in disease-associated pathways such as immune response, inflammation, apoptosis, Ca ( 2+) homeostasis and oxidative stress. The altered expression for selected genes was confirmed by qRT-PCR analysis. To our knowledge, this study represents the first analysis of retinal transcriptome from young and old rats with biologic replicates generated by RNA-Seq technology. We can conclude that the development of AMD-like retinopathy in OXYS rats is associated with an imbalance in immune and inflammatory responses. Aging alters the expression profile of numerous genes in the retina, and the genetic background of OXYS rats has a profound impact on the development of AMD-like retinopathy.
Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of early events of AMD is poorly understood. It is known that age-related alterations of retinal pigment epithelium (RPE) cells and of glial reactivity are early hallmarks of AMD. Here we evaluated contributions of the age-related alterations of the RPE and of glia to the development of AMD-like retinopathy in OXYS rats. We showed that destructive alterations in RPE cells are a primary change during the development of retinopathy in OXYS rats. Furthermore, a defect of retinal maturation and decreased immune function at the preclinical stage of retinopathy were observed in OXYS rats in addition to the impairment of RPE cell proliferation and of their capacity for division. At the active stage of the disease, the atrophic alterations increased, and reactive gliosis was observed when disease progressed, but immune function stayed weakened. Unexpectedly, we did not observe migration of microglia and macrophages into the photoreceptor layer. These results and the wide spectrum of age-related retinal alterations in humans as well as individual differences in the risk of AMD may be attributed to genetic factors and to differences in the underlying molecular events.
The main cause of vision loss in older individuals is age-related macular degeneration (AMD)--a complex multifactorial disease, whose etiology and pathogenesis are not completely understood. This is due to the impossibility of investigating the early stages of AMD and paucity of biological models. The senescence-accelerated OXYS rats develop retinopathy with clinical and morphological manifestations similar to AMD. But the genetic determinants of its development are not known. Previously we identified quantitative trait loci (QTLs) associated with the development of cataract, retinopathy, and behavioral signs in OXYS rat. In this study, we used bioinformatic analysis to show the enrichment of QTL region with genes associated with neurodegeneration, including a pathway of Alzheimer's disease. For selected list of candidate genes we designed oligonucleotide DNA chips. Using them we found small but significant changes in expression of several genes in OXYS retina compared to disease-free Wistar rats. Among the genes with altered expression were Picalm and Apba2, known to be participants in the processing of the beta-amyloid (Ab). Measurement of Ab 1-42 in the retina showed that its level increases with age in rats, and at advanced stages of retinopathy in OXYS rats, its expression becomes significantly higher than that of disease-free Wistar rats. Based on functional annotation of QTL, microarray, and ELISA results we suggest that accumulation of Ab may have a role in the pathogenesis of retinopathy in OXYS rats.
Background: Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of AMD is poorly understood. A large body of evidence has corroborated the key role of neurotrophins in development, proliferation, differentiation, and survival of retinal cells. Neurotrophin deprivation has been proposed to contribute to retinal-cell death associated with neurodegenerative diseases. Little is known about the expression of the immature form of neurotrophins (proneurotrophins) and their mature form [e.g., nerve growth factor (proNGF and mNGF) and brain-derived neurotrophic factor (proBDNF and mBDNF)] in the retina during physiological aging and against the background of AMD. In addition, cell-specific localization of proteins NGF and BDNF in the retina during AMD development is not clear. Here, we evaluated contributions of the age-related alterations in the neurotrophin system to the development of AMD-like retinopathy in OXYS rats. Methods: Male OXYS rats at preclinical (20 days), early (3 months), and late (18 months) stages of the disease and age-matched male Wistar rats (as controls) were used. We performed immunohistochemical localization of NGF, BDNF, and their receptors TrkA, TrkB, and p75NTR by fluorescence microscopy in retinal sections from OXYS and Wistar rats. Results: We found increased NGF staining in Muller cells in 18-month-old OXYS rats (progressive stage of retinopathy). In contrast, we observed only subtle changes in the labeling of mature BDNF (mBDNF) and TrkB during the development of AMD-like retinopathy in OXYS rats. Using colocalization with vimentin and NeuN, we detected a difference in the cell type-specific localization of mBDNF between OXYS and Wistar rats. We showed that the mBDNF protein was located in Muller cells in OXYS rats, whereas in the Wistar retina, mBDNF immunoreactivity was detected in Muller cells and ganglion cells. During the development of AMD-like retinopathy, proBDNF dominated over mBDNF during increasing cell loss in the OXYS retina. Conclusions: These data indicate that alterations in the balance of neurotrophic factors in the retina are involved in the development of AMD-like retinopathy in OXYS rats and confirm their participation in the pathogenesis of AMD in humans.
Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of early events in AMD is poorly understood. Senescence-accelerated OXYS rats develop AMD-like retinopathy. The aim of this study was to explore the differences in retinal gene expression between OXYS and Wistar (control) rats at age 20 d and to identify the pathways of retinal cell death involved in the OXYS retinopathy initiation and progression. Retinal mRNA profiles of 20-day-old OXYS and Wistar rats were generated at the sequencing read depth 40 mln, in triplicate, using Illumina GAIIx. A terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay was performed to measure the apoptosis level. GeneMANIA was used to construct interaction networks for differentially expressed (DE) apoptosis-related genes at ages 20 d and 3 and 18 months. Functional analysis was suggestive of a developmental process, signal transduction, and cell differentiation as the most enriched biological processes among 245 DE genes at age 20 d An increased level of apoptosis was observed in OXYS rats at age 20 d but not at advanced stages. We identified functional clusters in the constructed interaction networks and possible hub genes (Rasa1, cFLAR, Birc3, Cdk1, Hspa1b, Erbb3, and Ntf3). We also demonstrated the significance of the extrinsic apoptotic pathway at preclinical, early, and advanced stages of retinopathy development. Besides the cell death signaling pathways, immune system-related processes and lipid-metabolic processes showed overrepresentation in the clusters of all networks. These characteristics of the expression profile of the genes functionally associated with apoptosis may contribute to the pathogenesis of AMD-like retinopathy in senescence-accelerated OXYS rats.
Age-related macular degeneration (AMD) is a complex neurodegenerative disease resulting in a loss of central vision in the elderly. It is currently assumed that impairment of autophagy may be one of the key mechanisms leading to AMD. Here we estimated the influence of age-related autophagy alterations in the retina on the development of AMD-like retinopathy in senescence-accelerated OXYS rats. Significant changes in the expression of the autophagy proteins were absent at the age preceding the development of retinopathy (age 20 days). We found increased levels of LC3A/B, Atg7, and Atg12-Atg5 conjugated proteins in the OXYS retina during manifestation of this retinopathy at the age of 3 months. By contrast, in the retina of 18-month-old OXYS rats with a progressive stage of retinopathy, we revealed significantly decreased protein levels of Atg7 and Atg12-Atg5 as compared to age-matched Wistar rats. Simultaneously with perturbation of the autophagic response, the necrosome subunits Ripk1 and Ripk3 were detected in the OXYS retina. The downregulation of autophagy markers coincided with amyloid β accumulation (Moab-2) in the retinal pigment epithelium and choroid. Using high-throughput RNA sequencing, we found a missense single-nucleotide polymorphism (SNP) in the Pik3c2b gene associated with autophagy regulation. This SNP was predicted to significantly affect protein structure. Our data prove participation of the autophagic pathway in the progression of AMD-like retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.