The protective activity of the methanolic extract of the Crataegus songarica leaves was investigated against CCl4- and paracetamol-induced liver damage. On folklore levels, this plant is popularly used to treat various toxicological diseases. We evaluated both in vitro and ex vivo antioxidant activity of C. songarica. At higher concentration of plant extract (700 µg/ml), 88.106% inhibition on DPPH radical scavenging activity was observed and reducing power of extract was increased in a concentration-dependent manner. We also observed its inhibition on Fe2+/ascorbic acid-induced lipid peroxidation on rat liver microsomes in vitro. In addition, C. songarica extract exhibited antioxidant effects on calf thymus DNA damage induced by Fenton reaction. Hepatotoxicity was induced by challenging the animals with CCl4 (1 ml/kg body weight, i.p.) and paracetamol (500 mg/kg body weight) and the extract was administered at three concentrations (100, 200, and 300 mg/kg body weight). Hepatoprotection was evaluated by determining the activities of liver function marker enzymes and antioxidant status of liver. Administration of CCl4 elevated the levels of liver function enzymes, SGOT, SGPT, and LDH. We also observed a dramatic increase in ALT, AST, bilirubin, and alkaline phosphatase levels in rats administered 500 mg/kg body weight of paracetamol. Decreased antioxidant defense system as glutathione (GSH), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST), and superoxide dismutase (SOD) were observed in rats treated with CCl4 and paracetamol. Pretreatment with the extract decreased the elevated serum GOT, GPT, LDH, bilirubin, and alkaline phosphatase activities and increased the antioxidant enzymes in a dose-dependent manner. Therefore, C. songarica methanol extract may be an effective hepatic protective agent and viable candidate for treating hepatic disorders and other oxidative stress-related diseases.
Rosmarinic acid (RA), a bioactive compound isolated from Rosmarinus officinalis exhibits multiple pharmacological activities, including antioxidant, anti‐allergic and anti‐inflammatory effects. Herein, we report the synthesis of new series of amide analogs of rosmarinic acid along with their antioxidant potential. Highest DPPH scavenging effect was observed in case of (E)‐3‐(3,4‐dihydroxy‐phenyl)‐1‐((4‐fluorophenyl)amino)‐1‐oxopropan‐2‐yl‐3‐(3,4dihydroxy phenyl)acrylate (RA‐15) displaying an IC50 of 3.19 μg/ml compared to standard ascorbic acid (IC50=4.09 μg/ml). However (E)‐3‐(3,4‐dihydroxyphenyl)‐1‐((4‐hydroxyphenyl)amino)‐1‐oxopropan‐2‐yl‐3‐(3, 4‐dihydroxyphenyl)acrylate (RA‐10) displayed the highest hydroxy radical scavenging effect exhibiting an IC50 of 8.98 μg/ml compared to standard ascorbic acid (IC50=9.00 μg/ml). This study thus, provides an important aspect with regard to the use of these rosmarinic acid‐based antioxidants in food industry as dietary supplements.
Arnebia benthamii is a major ingredient of the commercial drug available under the name Gaozaban, which has antibacterial, antifungal, anti-inflammatory, and wound-healing properties. In the present study, in vitro antioxidant and anticancer activity of different extracts of Arnebia benthamii were investigated. Antioxidant potential of plant extracts was evaluated by means of total phenolics, DPPH, reducing power, microsomal lipid peroxidation, and hydroxyl radical scavenging activity. The highest phenolic content (TPC) of 780 mg GAE/g was observed in ethyl acetate, while the lowest TPC of 462 mg GAE/g was achieved in aqueous extract. At concentration of 700 µg/mL, DPPH radical scavenging activity was found to be highest in ethyl acetate extract (87.99%) and lowest in aqueous extract (73%). The reducing power of extracts increased in a concentration dependent manner. We also observed its inhibition on Fe2+/ascorbic acid-induced lipid peroxidation (LPO) on rat liver microsomes in vitro. In addition, Arnebia benthamii extracts exhibited antioxidant effects on Calf thymus DNA damage induced by Fenton reaction. Cytotoxicity of the extracts (10–100 µg/mL) was tested on five human cancer cell lines (lung, prostate, leukemia, colon, and pancreatic cell lines) using the Sulphorhodamine B assay.
The aim of the present study was to evaluate the hepatoprotective activity of methanolic extract of Elsholtzia densa against experimentally induced acute (CCl) and chronic (paracetamol) liver injury in albino wistar rats. Activity was measured by monitoring the serum levels of ALT, ALP AST and LDH, total protein levels, bilirubin and albumin. The results of the CCl and paracetamol-induced liver toxicity experiments showed that the rats treated with the methanolic extract of Elsholtzia densa exhibited a significant decrease in biochemical parameters as well as the proteins, which were all elevated in the CCl and paracetamol group. The extract at a concentration of 300 mg/kg body wt. showed a significant decline (P≤0.05) in the levels of AST, ALT, ALP and LDH to 69.50±2.23IU/L, 60.01±2.25IU/L,46.20±2.24 IU/L and 150.21±5.68IU/L in CCl injected animals and 51.12±2.20 IU/L,49.15±3.25 IU/L, 44.12±2.56 IU/L and 125.15±4.45 IU/L in paracetamol-treated animals when compared to the control group. The activities of tissue antioxidants GSH, GPx, GR, GST and CAT was significantly (P≤0.05) restored in dose dependent manner in animals treated with extracts as with acute and chronic hepatotoxic models. The current study confirmed the hepatoprotective effect of methanolic extract of Elsholtzia densa against the model hepatotoxicant CCl and paracetamol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.