The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F. 3ananassa). Using a mapping-by-sequencing approach, we identified a gypsytransposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.
Anthocyanins are the principal color-producing compounds synthesized in developing fruits of strawberry (Fragaria spp.). Substantial natural variation in color have been observed in fruits of diploid and octoploid accessions, resulting from distinct accumulation and distribution of anthocyanins in fruits. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 has been shown as the main activator in strawberry fruit. Here, we show that MYB10 mutations cause most of the anthocyanin variation observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F. ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsytransposon insertion in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional lossof-function MYB10 mutations were identified among geographically diverse whitefruited F. vesca ecotypes. Genetic and transcriptomic analyses in octoploid Fragaria spp. revealed that FaMYB10-2, one of three MYB10 homoeologs identified, residing in the F. iinumae-derived subgenome, regulates the biosynthesis of anthocyanins in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression and anthocyanin accumulation. Our findings suggest that putative cis regulatory elements provided by FaEnSpm-2 are required for high and ectopic MYB10-2 expression and induction of anthocyanin biosynthesis in fruit flesh. We developed MYB10-2 (sub-genome) specific DNA markers for marker-assisted selection that accurately predicted anthocyanin phenotypes in octoploid segregating populations.
Solid-state fermentation (SSF) is part of the pathway to consolidate waste as a relevant alternative for the valorization of organic waste. The objective of SSF is to produce one or several bioproducts of added value from solid substrates. Solid-state fermentation can use a wide variety of organic waste as substrates thus, it is an excellent candidate in the framework of the circular bioeconomy to change the status of waste from feedstock. The development of SSF was boosted in the previous decade by scientific efforts devoted to the production of hydrolytic enzymes. Nowadays, SSF has expanded to other valuable products: biosurfactants, biopesticides, aromas, pigments, and bio-flocculants, among others. This review explores the conditions to obtain the main emerging SSF products and highlight and discuss the challenges related to the scale-up of these processes and the bioproducts downstream, which hamper their further commercialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.