A signal current from a cylindrical ionisation chamber with an ionisation volume of 62.7 cm3, 40 mm in diameter and 50 mm long, peaked when the chamber was lixed at 0 degrees and at 90 degrees in 137Cs and 60Co gamma ray fields for source-chamber distances of 1 m and 2 m. A smaller ionisation chamber showed a small peak at 0 degrees in both fields but not at 90 degrees. However, calculations indicated that the signal current from the smaller chamber would also show a peak at 90 degrees in a 137Cs point-source gamma ray field. Peaks occur because gamma rays attenuate along the cylindrical side wall or along the end walls when a chamber is tilted slightly from 0 degrees or 90 degrees and the direction of the gamma ray beam agrees with the plane of one of these walls. These facts suggest the need for care in the common practice of measuring and calculating responses for cylindrical ionisation chambers fixed perpendicular to gamma ray beams.
In the last 3 years, almost all medical resources have been reserved for the screening and treatment of patients with coronavirus disease (COVID-19). Due to a shortage of medical staff and equipment, diagnosing sleep disorders, such as obstructive sleep apnea (OSA), has become more difficult than ever. In addition to being diagnosed using polysomnography at a hospital, people seem to pay more attention to alternative at-home OSA detection solutions. This study aims to review state-of-the-art assessment techniques for out-of-center detection of the main characteristics of OSA, such as sleep, cardiovascular function, oxygen balance and consumption, sleep position, breathing effort, respiratory function, and audio, as well as recent progress in the implementation of data acquisition and processing and machine learning techniques that support early detection of severe OSA levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.