Coffea arabica L. plantlets obtained ex vitro after sowing somatic embryos produced in a bioreactor in horticultural substrate were compared with those obtained in vitro from the same embryo population under conventional culturing conditions on semi-solid media. The intensity and quality of aerial and root system development were compared. Shoot emergence was more efficient in vitro but rooting frequencies were low. In contrast, all ex vitro-regenerated embryos rooted. The cotyledon area of mature embryos produced in a bioreactor positively affected plantlet development when regeneration was carried out ex vitro. Embryos with an intermediate cotyledon area (0.86 cm2) had the highest rates of plant conversion ex vitro (63%), and also resulted in vigorous plantlets. Mortality was higher in nursery conditions, but better plant development was obtained. The quality of plantlets produced under ex vitro conditions was reflected in better growth of the aerial and root systems, and also by similar morphological, mineral and water status characteristics to seedlings. Unlike roots formed on semi-solid media, those produced in soil were branched, fine (30-50% had a diameter of less than 0-5 mm) and they bore root hairs. Leaves of plantlets regenerated ex vitro had a histological structure similar to that of seedling leaves, and a lower stomatal density (100 vs. 233 mm-2). Moreover, they were more turgid, as indicated by higher pressure potential (psiP) (0.91 s. 0.30 MPa) and relative water content values (97 vs. 93%). Furthermore, under in vitro conditions, leaves had larger stomata which were abnormally round and raised. Direct sowing of germinated somatic embryos resulted in the rapid production of vigorous plantlets under ex vitro conditions, whilst removing the need for problematical and costly conventional acclimatization procedures.
In alley cropping systems, fast growing leguminous trees are pruned to reduce competition with crops for light and to provide organic inputs for crop nutrition. Tree regrowth depends on non-structural carbohydrate reserves in the remaining tree parts. In this study, the dynamics of starch and soluble carbohydrates in roots and stems of completely pruned (all shoots removed), partially pruned (one branch retained on the pruned stump) and unpruned Erythrina poeppigiana (Walp.) O.F. Cook and Gliricidia sepium (Jacq.) Kunth ex Walp. trees were studied under humid tropical conditions in Turrialba, Costa Rica. Measurements on starch and soluble carbohydrates in roots and stems were made at 0, 2, 6 and 12 weeks after pruning during both a ''rainy'' and a ''dry'' season. In general, the dynamics of non-structural carbohydrates in roots and stems of pruned E. poeppigiana and G. sepium trees were similar. Starch concentration was highest in unpruned trees and higher in roots than in stems of pruned trees. The effect of pruning intensity was first observed in stems, and starch reserves were more depleted in stems than in roots, an effect more evident during the ''dry'' season. The critical tree regrowth stage for starch mobilisation was that of vigorous sprout development at six or four weeks after pruning particularly in completely pruned trees. At this time, fine root biomass and length and nodule biomass in pruned trees decreased. Survival of fine roots and nodules was greater in partially pruned than in completely pruned trees. Starch accumulation in roots recommenced at 12 weeks after pruning in G. sepium, and later than 12 weeks after pruning in E. poeppigiana roots. This study showed that E. poeppigiana responded better to pruning regimes than G. sepium. Recovery of trees after pruning is better when trees are partially pruned than when completely pruned.
Coffee (Coffea spp.) is one of the world's most valuable agricultural export commodities produced by small‐scale farmers. Its germplasm, which holds useful traits for crop improvement, has traditionally been conserved in field genebanks, which presents many challenges for conservation. New techniques of in vitro and cryopreservation have been developed to improve the long‐term conservation of coffee. But a question remains as to whether these new techniques are more cost effective than field collections and more efficient at reducing genetic erosion. This study compared the costs of maintaining one of the world's largest coffee field collections with those of establishing a coffee cryo‐collection at the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) in Costa Rica. The results indicate that cryopreservation costs less (in perpetuity per accession) than conservation in field genebanks. A comparative analysis of the costs of both methods showed that the more accessions there are in cryopreservation storage, the lower the per‐accession cost. In addition to cost, the study examined the advantages of cryopreservation over field collection and showed that for species that are difficult to conserve using seeds, and that can only be conserved as live plants, cryopreservation may be the method of choice for long‐term conservation of genetic diversity.
We examined structural and physiological traits relevant to the phenology of the tropical dry forest (TDF) pioneer tree Cochlospermum vitifolium. Despite marked seasonality in rainfall, meristem activity occurred throughout the year. Leaves were produced almost continuously during the rainy season, while leaf shedding started early during drought, before changes in soil water content were observed. Phenological activity under drought included flowering and fruiting of leafless trees; bud break and shoot extension took place before the end of the dry season. Low wood density of C. vitifolium stems (0.17 g/cm 3 ) and lignotubers (0.14 g/cm 3 ) provided water and starch storage needed to support phenological events such as branch extension, leaf flushing, and reproduction during the dry season, and probably also contributed to survival following mechanical damage and fire, typical of early TDF successional stages. Lignotuber water and starch contents showed substantial seasonal variation, declining from the beginning of the dry season to their lowest levels at the time of reproduction and dry-season flushing. Stems progressively replaced lignotubers as main storage organs as tree size increased. Evidence for a role of water stores in buffering daily water deficits was weak. Leaf water potentials remained above À 1.2 MPa and stomatal conductance below 350 mmol/m 2 /s, suggesting that gas exchange during the rainy season was limited to prevent xylem cavitation. Leaf shedding occurred when early-morning and mid-day C L converged at the rainy-dry season transition, without changes in lignotuber or soil water content, suggesting that leaves of C. vitifolium are closely tuned to atmospheric drought.Abstract in Spanish is available at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.