Here, we present FireDock, an efficient method for the refinement and rescoring of rigid-body docking solutions. The refinement process consists of two main steps: (1) rearrangement of the interface side-chains and (2) adjustment of the relative orientation of the molecules. Our method accounts for the observation that most interface residues that are important in recognition and binding do not change their conformation significantly upon complexation. Allowing full side-chain flexibility, a common procedure in refinement methods, often causes excessive conformational changes. These changes may distort preformed structural signatures, which have been shown to be important for binding recognition. Here, we restrict side-chain movements, and thus manage to reduce the false-positive rate noticeably. In the later stages of our procedure (orientation adjustments and scoring), we smooth the atomic radii. This allows for the minor backbone and side-chain movements and increases the sensitivity of our algorithm. FireDock succeeds in ranking a near-native structure within the top 15 predictions for 83% of the 30 enzyme-inhibitor test cases, and for 78% of the 18 semiunbound antibody-antigen complexes. Our refinement procedure significantly improves the ranking of the rigid-body PatchDock algorithm for these cases. The FireDock program is fully automated. In particular, to our knowledge, FireDock's prediction results are comparable to current state-of-the-art refinement methods while its running time is significantly lower. The method is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.
Structural details of protein–protein interactions are invaluable for understanding and deciphering biological mechanisms. Computational docking methods aim to predict the structure of a protein–protein complex given the structures of its single components. Protein flexibility and the absence of robust scoring functions pose a great challenge in the docking field. Due to these difficulties most of the docking methods involve a two-tier approach: coarse global search for feasible orientations that treats proteins as rigid bodies, followed by an accurate refinement stage that aims to introduce flexibility into the process. The FireDock web server, presented here, is the first web server for flexible refinement and scoring of protein–protein docking solutions. It includes optimization of side-chain conformations and rigid-body orientation and allows a high-throughput refinement. The server provides a user-friendly interface and a 3D visualization of the results. A docking protocol consisting of a global search by PatchDock and a refinement by FireDock was extensively tested. The protocol was successful in refining and scoring docking solution candidates for cases taken from docking benchmarks. We provide an option for using this protocol by automatic redirection of PatchDock candidate solutions to the FireDock web server for refinement. The FireDock web server is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.
Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein–protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre‐generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small‐scale movements of the backbone and side‐chains are modeled and the binding orientation is improved by rigid‐body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem. Proteins 2008. Published Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.