Structural details of protein–protein interactions are invaluable for understanding and deciphering biological mechanisms. Computational docking methods aim to predict the structure of a protein–protein complex given the structures of its single components. Protein flexibility and the absence of robust scoring functions pose a great challenge in the docking field. Due to these difficulties most of the docking methods involve a two-tier approach: coarse global search for feasible orientations that treats proteins as rigid bodies, followed by an accurate refinement stage that aims to introduce flexibility into the process. The FireDock web server, presented here, is the first web server for flexible refinement and scoring of protein–protein docking solutions. It includes optimization of side-chain conformations and rigid-body orientation and allows a high-throughput refinement. The server provides a user-friendly interface and a 3D visualization of the results. A docking protocol consisting of a global search by PatchDock and a refinement by FireDock was extensively tested. The protocol was successful in refining and scoring docking solution candidates for cases taken from docking benchmarks. We provide an option for using this protocol by automatic redirection of PatchDock candidate solutions to the FireDock web server for refinement. The FireDock web server is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.
Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein–protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre‐generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small‐scale movements of the backbone and side‐chains are modeled and the binding orientation is improved by rigid‐body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem. Proteins 2008. Published Wiley‐Liss, Inc.
Upon binding, proteins undergo conformational changes. These changes often prevent rigid-body docking methods from predicting the 3D structure of a complex from the unbound conformations of its proteins. Handling protein backbone flexibility is a major challenge for docking methodologies, as backbone flexibility adds a huge number of degrees of freedom to the search space, and therefore considerably increases the running time of docking algorithms. Normal mode analysis permits description of protein flexibility as a linear combination of discrete movements (modes). Low-frequency modes usually describe the large-scale conformational changes of the protein. Therefore, many docking methods model backbone flexibility by using only few modes, which have the lowest frequencies. However, studies show that due to molecular interactions, many proteins also undergo local and small-scale conformational changes, which are described by high-frequency normal modes. Here we present a new method, FiberDock, for docking refinement which models backbone flexibility by an unlimited number of normal modes. The method iteratively minimizes the structure of the flexible protein along the most relevant modes. The relevance of a mode is calculated according to the correlation between the chemical forces, applied on each atom, and the translation vector of each atom, according to the normal mode. The results show that the method successfully models backbone movements that occur during molecular interactions and considerably improves the accuracy and the ranking of rigid-docking models of protein–protein complexes. A web server for the FiberDock method is available at: http://bioinfo3d.cs.tau.ac.il/FiberDock.
The CAPRI experiment (Critical Assessment of Predicted Interactions) simulates realistic and diverse docking challenges, each case having specific properties that may be exploited by docking algorithms. Motivated by the different CAPRI challenges, we developed and implemented a comprehensive suite of docking algorithms. These were incorporated into a dynamic docking protocol, consisting of four main stages: (1) Biological and bioinformatics research aiming to predict the binding site residues, to define distance constraints between interface atoms and to analyze the flexibility of molecules; (2) Rigid or flexible docking, performed by the PatchDock or FlexDock method, which utilizes the information gathered in the previous step. Symmetric complexes are predicted by the SymmDock method; (3) Flexible refinement and re-ranking of the rigid docking solution candidates, performed by FiberDock; and finally, (4) clustering and filtering the results based on energy funnels. We analyzed the performance of our docking protocol on a large benchmark and on recent CAPRI targets. The analysis has demonstrated the importance of biological information gathering prior to docking, which significantly increased the docking success rate, and of the refinement and re-scoring stage that significantly improved the ranking of the rigid docking solutions. Our failures were mostly a result of mishandling backbone flexibility, inaccurate homology modeling, or incorrect biological assumptions. Most of the methods are available at http://bioinfo3d.cs.tau.ac.il/.
Protein–protein docking algorithms aim to predict the structure of a complex given the atomic structures of the proteins that assemble it. The docking procedure usually consists of two main steps: docking candidate generation and their refinement. The refinement stage aims to improve the accuracy of the candidate solutions and to identify near-native solutions among them. During protein–protein interaction, both side chains and backbone change their conformation. Refinement methods should model these conformational changes in order to obtain a more accurate model of the complex. Handling protein backbone flexibility is a major challenge for docking methodologies, since backbone flexibility adds a huge number of degrees of freedom to the search space. FiberDock is the first docking refinement web server, which accounts for both backbone and side-chain flexibility. Given a set of up to 100 potential docking candidates, FiberDock models the backbone and side-chain movements that occur during the interaction, refines the structures and scores them according to an energy function. The FiberDock web server is free and available with no login requirement at http://bioinfo3d.cs.tau.ac.il/FiberDock/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.