Abstract-The keystroke biometric classification system described in this study was evaluated on two types of short input -passwords and numeric keypad input. On the password input, the system outperforms 14 other systems evaluated in a previous study using the same raw input data. The three top performing systems in that study had equal error rates between 9.6% and 10.2%. With the classification system developed in this study, equal error rates of 8.7% were achieved on both the features from the previous study and on a new set of features. On the numeric keypad input, the system achieved an equal error rate of 10.5% on the features from the previous study and 6.1% on a new set of features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.