Spatially controlling the Fermi level of topological insulators and keeping their electronic states stable are indispensable processes to put this material into practical use for semiconductor spintronics devices. So far, however, such a method has not been established yet. Here we show a novel method for doping a hole into n-type topological insulators Bi 2 X 3 (X= Se, Te) that overcomes the shortcomings of the previous reported methods. The key of this doping is to adsorb H 2 O on Bi 2 X 3 decorated with a small amount of carbon, and its trigger is the irradiation of a photon with sufficient energy to excite the core electrons of the outermost layer atoms. This method allows controlling the doping amount by the irradiation time and acts as photolithography. Such a tunable doping makes it possible to design the electronic states at the nanometer scale and, thus, paves a promising avenue toward the realization of novel spintronics devices based on topological insulators.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.