Yellowing diseases of field- and greenhouse-grown cucurbits are becoming increasingly important in many cucurbit cultivation areas in Iran. Virus surveys were conducted from 2011 to 2012 in greenhouse-grown cucumber (Cucumis sativus L.) and field-cultivated cucumber, squash (Cucurbita sp.) and melon (Cucumis melo L.) in Tehran, Semnan, Bushehr, Hormozgan, Isfahan, Yazd, and Fars provinces, the major cucurbit-growing areas in Iran. Leaf samples with various symptoms, e.g., chlorosis, interveinal chlorotic spots on lower leaves, bright yellow color or sever yellowing on older leaves, were collected and screened for the presence of the whitefly transmitted criniviruses (family Closteroviridae) Cucurbit chlorotic yellows virus (CCYV) and Cucurbit yellow stunting disorder virus (CYSDV) through double-antibody sandwich (DAS)-ELISA, using CCYV and CYSDV specific antisera (DSMZ, Germany). The ELISA results showed that of 347 cucumber leaf samples originating from cucumber greenhouses, 170 and 65 were positive for CCYV and CYSDV, respectively, and 45 samples were infected with both viruses. In addition, of 147 leaf samples collected from melon, cucumber, and squash grown in open fields, 57 and 53 were infected with CCYV and CYSDV, respectively, and 14 were infected with both viruses. These results indicate that these two viruses are widely distributed on these cucurbit crops in Iran. CCYV was not detected in Bushehr and CYSDV was not detected in Isfahan and Hormozgan provinces. To confirm the presence of CCYV and CYSDV, total RNA was extracted (Sigma Chemical, St. Louis, MO) from 18 samples that reacted positive in DAS-ELISA originating from different surveyed provinces. RT-PCR was carried out using specific primers Crini-s2 (5′-CATTCCTACCTGTTTAGCCA-3′) (2) and Crini-as1 (5′-ATCCTTCGCAGTGAAAAACC-3′) to amplify a 460-bp fragment of the HSP70 gene and CCYV using specific primers CCYV-HSP-F1 (5′-TGCGTATGTCAATGGTGTTATG-3′) and CCYV-HSP-R1 (5′-ATCCTTCGCAGTGAAAAACC-3′) to amplify a 462-bp fragment of the HSP70 gene (latter 3 primers from [3]). Expected DNA fragments for CYSDV and CCYV were amplified from 11 (CCYV 7/11, CYSDV 4/11) of 18 samples but not from any of the healthy controls. Further analysis by sequencing three selected PCR products amplified with primers CCYV-HSP-F1/R1 showed complete consensus among the sequences, and in comparison with sequences available at GenBank, the highest identities were obtained to Asian CCYV isolates (94% nt/98% aa identity). The CCYV sequences were deposited in GenBank under accessions KC559449 to KC559451. The identity of the amplified CYSDV DNA could also be confirmed by sequencing of three PCR products. CCYV has first been proven to occur in different countries in East Asia and has recently been reported from Sudan (2) and Lebanon (1), indicating the putative spread of the virus wherever cucurbits are grown and its vector, the whitefly Bemisia tabaci, is present. Large populations of whiteflies were present in all surveyed areas. However, to our knowledge, this is the first report for the occurrence of CCYV in Iran. In conclusion, the presence of CCYV and CYSDV in the major cucurbit growing provinces and the large whitefly population pose a serious threat to cucurbit production in Iran. References: (1) P. E. Abrahamian et al. Plant Dis. 96:1704, 2012. (2) K. Hamed et al. Plant Dis. 95:1321, 2011. (3) R. Zeng et al. Plant Dis. 95:354, 2011.
During surveys conducted in 2012–2013, viruslike symptoms of chlorotic spots with, in some cases, a necrotic centre in older leaves were observed in field‐ and greenhouse‐grown cucumber (Cucumis sativus L.), melon (C. melo L.) and squash (Cucurbita sp.) in the major cucurbit cultivation regions in Iran. Leaf samples were collected and tested for the presence of Cucumber leaf spot virus (CLSV, genus Aureusvirus, family Tombusviridae) by a virus specific double‐antibody sandwich enzyme‐linked immunosorbent assay (DAS‐ELISA). CLSV was detected in four of eight surveyed provinces in melon, cucumber and squash. When plant sap of ELISA positive samples was used to mechanically inoculate healthy squash plants, chlorotic spots with, in some cases, necrotic centres were observed on the inoculated leaves 20–25 days postinoculation. The presence of CLSV was confirmed by reverse transcription polymerase chain reactions using specific primers amplifying the entire coat protein gene of CLSV. Sequence comparison with sequences available at GenBank showed 93% nucleotide sequence identity to CLSV isolates from Israel (DQ227315) and Canada (EU127904), the only CLSV coat protein sequences available. To our knowledge, this is the first report of the occurrence of CLSV in Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.