RAS hyperactivation in the yeast Saccharomyces cerevisiae leads to multiple nutritional growth defects associated with overstimulation of the cAMP signaling pathway. Hyperactive RAS can be suppressed by overexpression of MSI1, a subunit of chromatin assembly factor-1 (yCAF-1). MSI1 overexpression suppresses phenotypes induced by increased cAMP content in multiple genetic backgrounds. However, MSI1 does not inhibit cAMP synthesis or total cellular cAMP-dependent protein kinase (PKA) activity, nor does MSI1 stimulate expression of several cAMP-repressible genes critical for the acquisition of thermotolerance in the stationary phase. Our analysis indicates that yCAF-1 is dispensable for inhibition of hyperactive RAS by MSI1. We demonstrate that in the presence of the PKA regulatory subunit, BCY1, MSI1 inhibits phenotypes of a mutationally activated PKA catalytic subunit. These observations indicate that MSI1 affects PKA function in a BCY1-dependent manner via mechanisms other than direct overall inhibition of PKA catalytic activity. MSI1 appears to provide two distinct roles in chromatin modeling as a component of yCAF-1, and in the inhibition of RAS signaling by modulating PKA.
We report the DNA sequence of an 8 kb segment localized on the right arm of chromosome II from Saccharomyces cerevisiae. The sequence reveals the presence of eight open reading frames (ORFs). Three of them, YBR1402, YBR1405 and YBR1406 are previously sequenced genes, respectively the RIM2 (replication in mitochondria), MSI1 (multicopy suppressor of IRA1 gene) and PGI1 (phosphoglucoisomerase) genes. The predicted product of the ORF YBR1401 could be the putative yeast ribosomal protein L21. A new essential gene, YBR1403, has been identified by disruption; it possesses a leucine zipper motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.