48Publications

213Citation Statements Received

1,333Citation Statements Given

How they've been cited

247

0

213

0

How they cite others

1,090

1

1,332

0

Publications

Order By: Most citations

This paper considers parametric Markov decision processes (pMDPs) whose transitions are equipped with affine functions over a finite set of parameters. The synthesis problem is to find a parameter valuation such that the instantiated pMDP satisfies a (temporal logic) specification under all strategies. We show that this problem can be formulated as a quadratically-constrained quadratic program (QCQP) and is non-convex in general. To deal with the NP-hardness of such problems, we exploit a convex-concave procedure (CCP) to iteratively obtain local optima. An appropriate interplay between CCP solvers and probabilistic model checkers creates a procedure -realized in the tool PROPheSYthat solves the synthesis problem for models with thousands of parameters.

Multi-objective verification problems of parametric Markov decision processes under optimality criteria can be naturally expressed as nonlinear programs. We observe that many of these computationally demanding problems belong to the subclass of signomial programs. This insight allows for a sequential optimization algorithm to efficiently compute sound but possibly suboptimal solutions. Each stage of this algorithm solves a geometric programming problem. These geometric programs are obtained by convexifying the nonconvex constraints of the original problem. Direct applications of the encodings as nonlinear programs are model repair and parameter synthesis. We demonstrate the scalability and quality of our approach by well-known benchmarks.

We consider Markov decision processes (MDPs) in which the transition probabilities and rewards belong to an uncertainty set parametrized by a collection of random variables. The probability distributions for these random parameters are unknown. The problem is to compute the probability to satisfy a temporal logic specification within any MDP that corresponds to a sample from these unknown distributions. In general, this problem is undecidable, and we resort to techniques from so-called scenario optimization. Based on a finite number of samples of the uncertain parameters, each of which induces an MDP, the proposed method estimates the probability of satisfying the specification by solving a finite-dimensional convex optimization problem. The number of samples required to obtain a high confidence on this estimate is independent from the number of states and the number of random parameters. Experiments on a large set of benchmarks show that a few thousand samples suffice to obtain high-quality confidence bounds with a high probability.

We study the problem of synthesizing a policy that maximizes the entropy of a Markov decision process (MDP) subject to a temporal logic constraint. Such a policy minimizes the predictability of the paths it generates, or dually, maximizes the exploration of different paths in an MDP while ensuring the satisfaction of a temporal logic specification. We first show that the maximum entropy of an MDP can be finite, infinite or unbounded. We provide necessary and sufficient conditions under which the maximum entropy of an MDP is finite, infinite or unbounded. We then present an algorithm which is based on a convex optimization problem to synthesize a policy that maximizes the entropy of an MDP. We also show that maximizing the entropy of an MDP is equivalent to maximizing the entropy of the paths that reach a certain set of states in the MDP. Finally, we extend the algorithm to an MDP subject to a temporal logic specification. In numerical examples, we demonstrate the proposed method on different motion planning scenarios and illustrate the relation between the restrictions imposed on the paths by a specification, the maximum entropy, and the predictability of paths.

We formalize synthesis of shared control protocols with correctness guarantees for temporal logic specifications. More specifically, we introduce a modeling formalism in which both a human and an autonomy protocol can issue commands to a robot towards performing a certain task. These commands are blended into a joint input to the robot. The autonomy protocol is synthesized using an abstraction of possible human commands accounting for randomness in decisions caused by factors such as fatigue or incomprehensibility of the problem at hand. The synthesis is designed to ensure that the resulting robot behavior satisfies given safety and performance specifications, e.g., in temporal logic. Our solution is based on nonlinear programming and we address the inherent scalability issue by presenting alternative methods. We assess the feasibility and the scalability of the approach by an experimental evaluation.

We consider a class of partially observable Markov decision processes (POMDPs) with uncertain transition and/or observation probabilities. The uncertainty takes the form of probability intervals. Such uncertain POMDPs can be used, for example, to model autonomous agents with sensors with limited accuracy, or undergoing a sudden component failure, or structural damage [1]. Given an uncertain POMDP representation of the autonomous agent, our goal is to propose a method for checking whether the system will satisfy an optimal performance, while not violating a safety requirement (e.g. fuel level, velocity, and etc.). To this end, we cast the POMDP problem into a switched system scenario. We then take advantage of this switched system characterization and propose a method based on barrier certificates for optimality and/or safety verification. We then show that the verification task can be carried out computationally by sum-of-squares programming. We illustrate the efficacy of our method by applying it to a Mars rover exploration example.

scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.

hi@scite.ai

10624 S. Eastern Ave., Ste. A-614

Henderson, NV 89052, USA

Copyright © 2024 scite LLC. All rights reserved.

Made with 💙 for researchers

Part of the Research Solutions Family.