A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of β-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified β-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified β-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry.
This study addresses the interactions of coffee storage proteins with coffee-specific phenolic compounds. Protein profiles of Coffea arabica and Coffea canephora (var. robusta) were compared. Major phenolic compounds were extracted and analyzed with appropriate methods. The polyphenol-protein interactions during protein extraction have been addressed by different analytical setups [reversed-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS), and Trolox equivalent antioxidant capacity (TEAC) assays], with focus directed toward identification of covalent adduct formation. The results indicate that C. arabica proteins are more susceptible to these interactions and the polyphenol oxidase activity seems to be a crucial factor for the formation of these addition products. A tentative allocation of the modification type and site in the protein has been attempted. Thus, the first available in silico modeling of modified coffee proteins is reported. The extent of these modifications may contribute to the structure and function of "coffee melanoidins" and are discussed in the context of coffee flavor formation.
The covalent interactions between whey protein isolate (WPI) and rosmarinic acid (RosA) at two different conditions, alkaline (pH 9) and enzymatic (in the presence of tyrosinase, PPO), at room temperature with free atmospheric air were studied. The conjugates formed between WPI and RosA were characterized in terms of their physicochemical and functional properties. The changes in protein structure were analyzed by intrinsic fluorescence and binding of 8-anilino-1-naphthalenesulfonic acid. The findings show that the covalent interactions caused a decrease in free amino and thiol groups and tryptophan content at both conditions. The decrease at enzymatic conditions was lower than at alkaline conditions. In addition, modified WPI at alkaline conditions exhibited higher antioxidative capacity compared to the modification at enzymatic conditions. However, WPI modified at enzymatic condition showed mild antimicrobial activity against Staphylococcus aureus LMG 10147 and MU50 compared to WPI modified at alkaline conditions and unmodified WPI (control). The modified WPI can be used as multifunctional ingredient into various food products with an additional health promoting effect of the bound phenolic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.