Ribulose bisphosphate carboxylase activity was examined in Pinus silvestris L. during successive seasons. The enzyme activities were studied both in seedlings, kept under controlled conditions in a climate chamber, and in needles from a 15‐year‐old tree in a natural stand. The enzyme activities were analysed in cell‐free extracts prepared with Tween 80 as protective agent. The carboxylase activity fluctuated periodically both in the seedlings and in the natural stand. In the seedlings, the weight‐related activity in the older needles increased 50–100% (in the cotyledons c. 200%) in the beginning of the “summer”. It decreased as the new shoot developed. The specific activity increased c. 100%. With chlorophyll as base, the activity usually decreased during “summer”. In the developing current needles the carboxylase activity increased when expressed on a weight or on a protein basis. The decrease in weight‐related carboxylase activity in the older needles was preceded by, or simultaneous with, loss of total protein. It is suggested that protein, including the carboxylase, is utilized as nitrogen reserve for the new shoot. During hardening by combined photoperiod and thermoperiod, the carboxylase activity decreased when expressed relative to dry weight and protein. Calculated on a chlorophyll basis, the activity was rather constant. In the natural stand the activity in the one‐ and two‐year‐old needles increased during spring and summer and decreased during autumn and winter. Even at severe winter stress substantial carboxylase activity remained in the needles. The activity of the enzyme in vivo is discussed with respect to electron transport and net photosynthesis.
Net photosynthesis of seedlings of Pinus silvestris has been measured and compared with the activities of photosynthetic electron transport and extracted RuBP carboxylase. The effects of prolonged frost hardening (photoperiod 8 h, + 3°C) followed by winter stress at subzero temperatures were analysed. There was a parallel effect of frost hardening and winter stress on the photosynthetic properties of both intact seedlings and isolated chloroplast thylakoids. The activity of extracted RuBP carboxylase was less affected by the treatments. In relation to earlier works we conclude that the decay of net photosynthesis in winter climate is determined by the electron transport properties of the chloroplast thylakoids, i.e. by the pool sizes of photosynthetically active plastoquinone. The results of this work justify the definition of two phases in the response of conifers towards autumn and winter climates: I. Frost hardening occurs at temperatures slightly above zero and it does not affect the efficiency of photosynthesis as defined by the quantum yield at rate limiting light absorption. II. Winter stress occurs at subzero temperatures and it is characterized by a suppression of the photosynthetic efficiency as a result of damage within the photosynthetic apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.