†Miwa Morita and Masayuki Fujino contributed equally to this work.The programmed death-1 (PD-1)/B7-H1 pathway acts as an important negative regulator of immune responses. We herein investigated the role of the PD-1/B7-H1 pathway in establishing an immunological spontaneous tolerance status in mouse liver allografting. B7-H1 is highly expressed on the donor-derived tissue cells and it is also associated with the apoptosis of infiltrating T cells in the allografts. Strikingly, a blockade of the PD-1/B7-H1 pathway via anti-B7-H1mAb or using B7-H1 knockout mice as a donor led to severe cell infiltration as well as hemorrhaging and necrosis, thus resulting in mortality within 12 days. Furthermore, the expression of the FasL, perforin, granzyme B, iNOS and OPN mRNA in the liver allografts increased in the antibody-treated group in comparison to the controls. Taken together, these data revealed that the B7-H1 upregulation on the tissue cells of liver allografts thus plays an important role in the apoptosis of infiltrating cells, which might play a critical role of the induction of the spontaneous tolerance after hepatic transplantation in mice.
In autosomal recessive polycystic kidney disease (ARPKD), progressive enlargement of fluid-filled cysts is due to aberrant proliferation of tubule epithelial cells and transepithelial fluid secretion leading to extensive nephron loss and interstitial fibrosis. Congenital hepatic fibrosis associated with biliary cysts/dilatations is the most common extrarenal manifestation in ARPKD and can lead to massive liver enlargement. Peroxisome proliferator-activated receptor γ (PPAR-γ), a member of the ligand-dependent nuclear receptor superfamily, is expressed in a variety of tissues, including the kidneys and liver, and plays important roles in cell proliferation, fibrosis, and inflammation. In the current study, we determined that pioglitazone (PIO), a PPAR-γ agonist, decreases polycystic kidney and liver disease progression in the polycystic kidney rat, an orthologous model of human ARPKD. Daily treatment with 10 mg/kg PIO for 16 wk decreased kidney weight (% of body weight), renal cystic area, serum urea nitrogen, and the number of Ki67-, pERK1/2-, and pS6-positive cells in the kidney. There was also a decrease in liver weight (% of body weight), liver cystic area, fibrotic index, and the number of Ki67-, pERK1/2-, pERK5-, and TGF-β-positive cells in the liver. Taken together, these data suggest that PIO inhibits the progression of polycystic kidney and liver disease in a model of human ARPKD by inhibiting cell proliferation and fibrosis. These findings suggest that PPAR-γ agonists may have therapeutic value in the treatment of the renal and hepatic manifestations of ARPKD.
Background : Human artificial chromosomes (HACs) are generated from the precursor DNA constructs containing α α α α -satellite DNA with CENP-B boxes, and the process could be used for the incorporation of large genes in the HACs. Guanosine triphosphate cyclohydrolase I (GCH1) is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin, the essential co-factor of aromatic amino acid hydroxylases and nitric oxide synthase.
Here we examined whether the expression of a novel immunoregulatory gene set could be used to predict outcomes in murine models of rapamycin-induced cardiac tolerance, spontaneous hepatic tolerance, and cardiac rejection. The expression of the immunoregulatory gene set was assessed with the GeXP multiplex reverse-transcription polymerase chain reaction (RT-PCR) analysis system, and it was correlated to the pathological and biochemical parameters of the allografts. In rejecting cardiac grafts, the increased expression of an inflammatory set of genes, which included CD45, CD4, CD25, suppressor of cytokine signaling 2, cytotoxic T lymphocyte-associated protein 4 (CTLA4), selectin lymphocyte, interferon-c (IFN-c), programmed cell death 1 (Pdcd1), and granzyme B (Gzmb), was seen 8 days after transplantation along with histological evidence of severe allograft rejection. In tolerant cardiac allografts, the expression of fibrinogen-like protein 2 (Fgl2), Pdcd1, killer cell lectin-like receptor G1 (Klrg1), CTLA4, and lymphocyte-activation gene 3 was associated with tolerance. In a model of liver allograft tolerance, the increased expression of lectin galactose-binding soluble 1, Fgl2, CD39, phosphodiesterase 3B, Klrg1, forkhead box P3 (Foxp3), and transforming growth factor b as well as the inflammatory set of genes was observed 8 to 14 days after transplantation (ie, when there was severe inflammatory injury). At a later time when the liver allografts had been fully accepted and were histologically normal, the expression of the inflammatory set of genes returned to the baseline, but the expression of the tolerogenic set of genes was still increased. Genes that were expressed in tolerant cardiac and liver allografts included Fgl2, Klrg1, and Foxp3, whereas genes associated with rejection included CD25, Additional Supporting Information may be found in the online version of this article.Abbreviations: CTLA4, cytotoxic T lymphocyte-associated protein 4; Ebi3, Epstein-Barr virus induced 3; Fgl2, fibrinogen-like protein 2; Foxp3, forkhead box P3; GITR, glucocorticoid-induced tumor necrosis factor-related protein; GOT, glutamate oxaloacetate transaminase; Gpr83, G protein-coupled receptor 83; GPT, glutamate pyruvate transaminase; Gzmb, granzyme B; IFN-c, interferon-c; Klrg1, killer cell lectin-like receptor G1; Lgals1, lectin galactose-binding soluble 1; mRNA, messenger RNA; MST, mean survival time; Nrp1, neuropilin 1; Nt5e, 5 0 -nucleotidase ecto; OLT, orthotopic liver transplantation; PCR, polymerase chain reaction; Pdcd1, programmed cell death 1; Pde3b, phosphodiesterase 3B; POD, postoperative day; qRT-PCR, quantitative reverse-transcription polymerase chain reaction; RT-PCR, reverse-transcription polymerase chain reaction; Sell, selectin lymphocyte; Socs2, suppressor of cytokine signaling 2; TGF-b, transforming growth factor b; Treg, regulatory T cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.