This paper gives a comprehensive overview of the state-of-the-art machine learning methods that can be used for estimating self-compacting rubberized concrete (SCRC) compressive strength, including multilayered perceptron artificial neural network (MLP-ANN), ensembles of MLP-ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) and Gaussian process regression (GPR). As a basis for the development of the forecast model, a database was obtained from an experimental study containing a total of 166 samples of SCRC. Ensembles of MLP-ANNs showed the best performance in forecasting with a mean absolute error (MAE) of 2.81 MPa and Pearson’s linear correlation coefficient (R) of 0.96. The significantly simpler GPR model had almost the same accuracy criterion values as the most accurate model; furthermore, feature reduction is easy to combine with GPR using automatic relevance determination (ARD), leading to models with better performance and lower complexity.
Seven state-of-the-art machine learning techniques for estimation of construction costs of reinforced-concrete and prestressed concrete bridges are investigated in this paper, including artificial neural networks (ANN) and ensembles of ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) method, and Gaussian process regression (GPR). A database of construction costs and design characteristics for 181 reinforced-concrete and prestressed-concrete bridges is created for model training and evaluation.
Replacing a specified quantity of cement with Class F fly ash contributes to sustainable development and reducing the greenhouse effect. In order to use Class F fly ash in self-compacting concrete (SCC), a prediction model that will give a satisfactory accuracy value for the compressive strength of such concrete is required. This paper considers a number of machine learning models created on a dataset of 327 experimentally tested samples in order to create an optimal predictive model. The set of input variables for all models consists of seven input variables, among which six are constituent components of SCC, and the seventh model variable represents the age of the sample. Models based on regression trees (RTs), Gaussian process regression (GPR), support vector regression (SVR) and artificial neural networks (ANNs) are considered. The accuracy of individual models and ensemble models are analyzed. The research shows that the model with the highest accuracy is an ensemble of ANNs. This accuracy expressed through the mean absolute error (MAE) and correlation coefficient (R) criteria is 4.37 MPa and 0.96, respectively. This paper also compares the accuracy of individual prediction models and determines their accuracy. Compared to theindividual ANN model, the more transparent multi-gene genetic programming (MGPP) model and the individual regression tree (RT) model have comparable or better prediction accuracy. The accuracy of the MGGP and RT models expressed through the MAE and R criteria is 5.70 MPa and 0.93, and 6.64 MPa and 0.89, respectively.
The paper presents and analyzes the state-of-the-art machine learning techniques that can be applied as a decision-support system in the estimation of resource consumption in the construction of reinforced concrete and prestressed concrete road bridges. The formed database on the consumption of concrete in the construction of bridges, along with their project characteristics, was the basis for the formation of the assessment model. The models were built using information from 181 reinforced concrete bridges in the eastern and southern branches of Corridor X in Serbia, with a value of more than 100 million euros. The application of artificial neural network models (ANNs), models based on regression trees (RTs), models based on support vector machines (SVM), and Gaussian processes regression (GPR) were analyzed. The accuracy of each model is determined by multi-criterion evaluation against four accuracy criteria root mean square error (RMSE), mean absolute error (MAE), Pearson’s linear correlation coefficient (R), and mean absolute percentage error (MAPE). According to all established criteria, the model based on GPR demonstrated the greatest accuracy in calculating the concrete consumption of bridges. According to the study, using automatic relevance determination (ARD) covariance functions results in the most accurate and optimal models and also makes it possible to see how important each input variable is to the model’s accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.