The cell adhesion protein immunoglobulin superfamily 4A (IGSF4A) is expressed on the surfaces of spermatogenic cells in the mouse testis. During spermatogenesis, IGSF4A is considered to bind to the surface of Sertoli cells in a heterophilic manner. To identify this unknown partner of IGSF4A, we generated rat monoclonal antibodies against the membrane proteins of mouse Sertoli cells grown in primary culture. Using these monoclonal antibodies, we isolated a clone that immunostained Sertoli cells and reacted with the product of immunoprecipitation of the homogenate of mouse testis with anti-IGSF4A antibody. Subsequently, to identify the Sertoli cell membrane protein that is recognized by this monoclonal antibody, we performed expression cloning of a cDNA library from the mouse testis. As a result, we identified poliovirus receptor (PVR), which is another IGSF-type cell adhesion molecule, as the binding partner of IGSF4A. The antibodies raised against PVR and IGSF4A immunoprecipitated both antigens in the homogenate of mouse testis. Immunoreactivity for PVR was present in Sertoli cells but not in spermatogenic cells at all stages of spermatogenesis. Overexpression of PVR in TM4, a mouse Sertoli cell line, increased more than three-fold its capacity to adhere to Tera-2, which is a human cell line that expresses IGSF4A. These findings suggest that the heterophilic binding of PVR to IGSF4A is responsible, at least in part, for the interaction between Sertoli and spermatogenic cells during mouse spermatogenesis.
The ezrin, radixin, and moesin (ERM) proteins represent a family of adaptor proteins linking transmembrane proteins to the cytoskeleton. The seminiferous epithelium undergoes extensive changes in cellular composition, location, and shape, implicating roles of the membrane-cytoskeleton interaction. It remains unknown, however, whether the ERM proteins are expressed and play significant roles in the testis. In the present study, we examined the spatiotemporal expression of ERM proteins in the mouse testis by Western blotting and immunohistochemistry. Ezrin immunoreactivity was demonstrated in the cytoplasm of steps 15 and 16 spermatids from 5 weeks postpartum through adulthood, whereas radixin immunoreactivity was in the apical cytoplasm of Sertoli cells from 1 week through 2 weeks postpartum. No immunoreactivity for moesin was detected at any age. Immunoprecipitation demonstrated that ezrin was bound to the cytoskeletal component actin, whereas radixin was bound to both actin and tubulin. Of the transmembrane proteins known to interact with ERM proteins, only cystic fibrosis transmembrane conductance regulator, a chloride transporter, was bound to ezrin in elongated spermatids. These results suggest that ezrin is involved in spermiogenesis whereas radixin is involved in the maturation of Sertoli cells, through interaction with different sets of membrane proteins and cytoskeletal components.
In the submandibular gland (SMG) of mice, a duct portion called the granular convoluted tubule (GCT) is developed preferentially in males with puberty. This sexual dimorphism is androgen-dependent, but the underlying molecular mechanisms are unclear. We have demonstrated that the expression of a transcription factor JunD is regulated in association with the androgen-induced differentiation of GCT cells from striated duct (SD) cells. Menin, a nuclear protein encoded by the MEN1 tumor-suppressor gene, is known to bind JunD, thereby inhibiting its activity. In the present study, we examined the expression of menin in the mouse SMG by use of Northern blotting, Western blotting, and immunohistochemistry. Immunoreactivity for menin was higher in the female than male gland, and localized to the nuclei of intercalated duct cells and a subpopulation of SD cells. In contrast, GCT cells in males appeared negative for menin. The levels of menin in the SMG were increased with castration in males and decreased by repeated administration of testosterone to females or to castrated males. After a single administration of testosterone to females, many SD cells newly gained nuclear menin, which was lost as the cells converted to GCT cells by 48 hrs. These patterns of the expression and localization of menin were quite similar to those of JunD. Furthermore, the coimmunoprecipitation analysis of the SMG homogenates indicated that menin binds JunD in vivo. The present study suggests that the JunD-menin complex plays signifi cant roles in the androgen-dependent differentiation of the duct system in the mouse SMG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.