In this paper, we propose a new approximation method (we shall call this method as α-parameterized differential transform method), which differs from the traditional differential transform method in calculating the coefficients of Taylor polynomials. Numerical examples are presented to illustrate the efficiency and reliability of our own method. Namely, two Sturm–Liouville problems are solved by the present α-parameterized differential transform method, and the obtained results are compared with those obtained by the classical DTM and by the analytical method. The result reveals that α-parameterized differential transform method is a simple and effective numerical algorithm.
The history of boundary value problems for differential equations starts with the well-known studies of D. Bernoulli, J. D’Alambert, C. Sturm, J. Liouville, L. Euler, G. Birkhoff and V. Steklov. The greatest success in spectral theory of ordinary differential operators has been achieved for Sturm–Liouville problems. The Sturm–Liouville-type boundary value problem appears in solving the many important problems of natural science. For the classical Sturm–Liouville problem, it is guaranteed that all the eigenvalues are real and simple, and the corresponding eigenfunctions forms a basis in a suitable Hilbert space. This work is aimed at computing the eigenvalues and eigenfunctions of singular two-interval Sturm–Liouville problems. The problem studied here differs from the standard Sturm–Liouville problems in that it contains additional transmission conditions at the interior point of interaction, and the eigenparameter λ appears not only in the differential equation, but also in the boundary conditions. Such boundary value transmission problems (BVTPs) are much more complicated to solve than one-interval boundary value problems ones. The major difficulty lies in the existence of eigenvalues and the corresponding eigenfunctions. It is not clear how to apply the known analytical and approximate techniques to such BVTPs. Based on the Adomian decomposition method (ADM), we present a new analytical and numerical algorithm for computing the eigenvalues and corresponding eigenfunctions. Some graphical illustrations of the eigenvalues and eigenfunctions are also presented. The obtained results demonstrate that the ADM can be adapted to find the eigenvalues and eigenfunctions not only of the classical one-interval boundary value problems (BVPs) but also of a singular two-interval BVTPs.
The main purpose of this work is to provide a new approximation method, the so-called parameterised differential transform method (PDTM), for solving high-order boundary value problems (HOBVPs). Our method is based on the classical differential transform method and differs from it by calculating the coefficients of the solution, which has the form of a series. We applied the proposed new method to fourth-order boundary value problems to substantiate it. The resulting solution is graphically compared with the exact solution and the solutions obtained by the classical DTM and ADM methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.