A method has been developed for the determination of the efficiency of fluorescence resonance energy transfer efficiency between moieties located on cell surfaces by performing individual cell fluorescence polarization (FP) measurements. The absolute value of energy transfer efficiency (E) is calculated on an individual cell basis. The examination of this methodology was carried out using model experiments on human T lymphocyte cells. The cells were labeled with fluorescein-conjugated Concanavalin A (ConA) as donor, or rhodamine-conjugated ConA as acceptor. The experiments and results clearly indicate that determination of E via FP measurements is possible, efficient, and more convenient than other methods.
The use of ratiometric fluorescence polarization (RFP) as a functional parameter in monitoring cellular activation is suggested, based on the physical phenomenon of fluorescence polarization dependency on emission wavelengths in multiple (at least binary) solutions. The theoretical basis of this dependency is thoroughly discussed and examined via simulation. For simulation, aimed to imitate a fluorophore-stained cell, real values of the fluorescence spectrum and polarization of different single fluorophore solutions were used. The simulation as well as the experimentally obtained values of RFP indicated the high sensitivity of this measure. Finally, the RFP parameter was utilized as a cytometric measure in three exemplary cellular bioassays. In the first, the apoptotic effect of oxLDL in a human Jurkat FDA-stained T cell line was monitored by RFP. In the second, the interaction between cell surface membrane receptors of human T lymphocyte cells was monitored by RFP measurements as a complementary means to the fluorescence resonance energy transfer (FRET) technique. In the third bioassay, cellular thiol level of FDA- and CMFDA-labelled Jurkat T cells was monitored via RFP.
Fluorescence resonance energy transfer (FRET) has become a widely used spectroscopic tool for detecting molecular interactions and molecular proximity in solution, as well as in membranes. On the other hand, fluorescence polarization (FP) is a convenient measure: ratiometric and simple to execute. This work presents a novel methodology for determining energy transfer efficiency (E) via FP measurement. The methodology is based on the fact that a donor's fluorescence lifetime is shortened due to FRET and, consequently, its FP increases. As a model, the present work evaluates the E between fluorescein and rhodamine conjugated ConA attached to the receptors in the lymphocyte membrane. It shows not only that FRET imaging via FP is possible, but also that it is inexpensive, simple to perform, conveniently adaptable to the commonly used fluorescent microscopy, and readily interpretable.
Tissue viability represents the balance between O 2 supply and demand. In our previous paper Proc.SPIE 6083 : z1-z10, 2006) the HbO 2 was added to the multiparametric tissue spectroscope (Mayevsky et al J.Biomedical Optics 9:1028-1045. This parameter provides relative values of microcirculatory blood oxygenation (MC-HbO 2 ) evaluated by the 2 wavelength reflectometry principle. The advantage of this approach as compared to pulse oximetry is that the measurement is not dependent of the existence of the pulse of the heart. Also in the MC-HbO 2 the information is collected from small vessels providing O 2 to the mitochondria as compared to the pulse oximeter indicating blood oxygenation by the respiratory and cardiovascular systems. In the present study we compared the level of blood oxygenation measured by the pulse oximeter to that measured by the CritiView in the brain exposed to various systemic and localized perturbations of O 2 supply or demand. We exposed gerbils to anoxia, hypoxia, ischemia and terminal anoxia. In addition we measured mitochondrial NADH (surface fluorometry), tissue reflectance, tissue blood flow (laser Doppler flowmetry) from the same site of MC-HbO 2 measurement. A clear connection was found between the two blood oxygenation parameters only when systemic perturbations were used (anoxia, hypoxia and terminal anoxia). Under local events (ischemia) the MC-HbO 2 was responsive while the systemic oxygenation was unchanged. We concluded that MC-HbO 2 has a significant value in interpretation of tissue energy metabolism under pathophysiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.