Disease-specific alterations of the cell-free DNA methylation status are frequently found in serum samples and are currently considered to be suitable biomarkers.Candidate markers were identified by bisulfite conversion-based genome-wide methylation screening of lung tissue from lung cancer, fibrotic ILD, and COPD. cfDNA from 400 μl serum (n = 204) served to test the diagnostic performance of these markers. Following methylation-sensitive restriction enzyme digestion and enrichment of methylated DNA via targeted amplification (multiplexed MSRE enrichment), a total of 96 markers were addressed by highly parallel qPCR.Lung cancer was efficiently separated from non-cancer and controls with a sensitivity of 87.8%, (95%CI: 0.67–0.97) and specificity 90.2%, (95%CI: 0.65–0.98). Cancer was distinguished from ILD with a specificity of 88%, (95%CI: 0.57–1), and COPD from cancer with a specificity of 88% (95%CI: 0.64–0.97). Separation of ILD from COPD and controls was possible with a sensitivity of 63.1% (95%CI: 0.4–0.78) and a specificity of 70% (95%CI: 0.54–0.81). The results were confirmed using an independent sample set (n = 46) by use of the four top markers discovered in the study (HOXD10, PAX9, PTPRN2, and STAG3) yielding an AUC of 0.85 (95%CI: 0.72–0.95).This technique was capable of distinguishing interrelated complex pulmonary diseases suggesting that multiplexed MSRE enrichment might be useful for simple and reliable diagnosis of diverse multifactorial disease states.
Predictive preventive personalized medicine Liver cancer is the fifth most common form of cancer worldwide [1], with an incidence rate almost equals the mortality rate and ranks 3 rd among causes of cancer related death [2]. The coexistence of two life threatening conditions, cancer and liver cirrhosis makes the staging challenging. However, there are some staging systems, e.g. the Barcelona staging system for Hepatocellular carcinoma (HCC) [3], that suggest treatment options and management. Whereas diagnosis in early stages gives hope for a curative outcome, the treatment regime for around 80 % [2] of the patients classified as severe stages only gears towards palliation [4]. An intra-arterial radiation approach, radioembolisation (RE) is ubiquitously applied as one of palliative approaches. Although, in general RE shows promising results in intermediate and advanced stage HCC [5], individual treatment outcomes are currently unpredictable. Corresponding stratification criteria are still unclear. We hypothesised that individual radioresistance/radiosensitivity may play a crucial role in treatment response towards RE strongly influencing individual outcomes. Further, HCC represents a highly heterogeneous group of patients which requires patient stratification according to clear criteria for treatment algorithms to be applied individually. Multilevel diagnostic approach (MLDA) is considered helpful to set-up optimal predictive and prognostic biomarker panel for individualised application of radioembolisation. Besides comprehensive medical imaging, our MLDA includes non-invasive multi-omics and sub-cellular imaging. Individual patient profiles are expected to give a clue to targeting shifted molecular pathways, individual RE susceptibility, treatment response. Hence, a dysregulation of the detoxification pathway (SOD2/Catalase) might indicate possible adverse effects of RE, and highly increased systemic activities of matrix metalloproteinases indicate an enhanced tumour aggressiveness and provide insights into molecular mechanisms/targets. Consequently, an optimal set-up of predictive and prognostic biomarker panels may lead to the changed treatment paradigm from untargeted "treat and wait" to the cost-effective predictive, preventive and personalised approach, improving the life quality and life expectancy of HCC patients. Keywords: Market access, Value, Strategy, Companion diagnostics, Cost-effectiveness, Reimbursement, Health technology assessment, Economic models, Predictive preventive personalized medicine Achieving and sustaining seamless "drug -companion diagnostic" market access requires a sound strategy throughout a product life cycle, which enables timely creation, substantiation and communication of value to key stakeholders [1, 2]. The study aims at understanding the root-cause of market access inefficiencies of companies by gazing at the "Rx-CDx" co-development process through the prism of "value", and developing a perfect co-development scenario based on the literature review and discussions with the ...
Change of DNA cytosine methylation (5mC) is an early event in the development of cancer, and the recent discovery of a 5-hydroxymethylated form (5hmC) of cytosine suggests a regulatory epigenetic role that might be different from 5-methylcytosine. Here, we aimed at elucidating the role of 5hmC in breast cancer. To interrogate the 5hmC levels of the leucine zipper, putative tumor suppressor 1 (LZTS1) gene in detail, we analyzed 75 primary breast cancer tissue samples from initial diagnosis and 12 normal breast tissue samples derived from healthy persons. Samples were subjected to 5hmC glucosyltransferase treatment followed by restriction digestion and segment-specific amplification of 11 polymerase chain reaction products. Nine of the 11 5'LZTS1 fragments showed significantly lower (fold change of 1.61-6.01, P < .05) 5hmC content in primary breast cancer tissue compared to normal breast tissue samples. No significant differences were observed for 5mC DNA methylation. Furthermore, both LZTS1 and TET1 mRNA expressions were significantly reduced in tumor samples (n = 75, P < .001, Student's t test), which correlated significantly with 5hmC levels in samples. 5hmC levels in breast cancer tissues were associated with unfavorable histopathologic parameters such as lymph node involvement (P < .05, Student's t test). A decrease of 5hmC levels of LZTS1, a classic tumor suppressor gene known to influence metastasis in breast cancer progression, is correlated to down-regulation of LZTS1 mRNA expression in breast cancer and might epigenetically enhance carcinogenesis. The study provides support for the novel hypothesis that suggests a strong influence of 5hmC on mRNA expression. Finally, one may also consider 5hmC as a new biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.