A significant issue in drug efficacy studies is animal study design. Here we hypothesize that when evaluating new or existing therapeutics for the treatment of cancer, the location of disease burden will influence drug efficacy. To study this, Female NCr nude mice were inoculated with luciferase-positive human breast cancer cells (LCC6WT-luc) orthotopically (o.t.), intraperitoneally (i.p.) or intracardiacly (i.c.) to create localized, ascites or disseminated disease, respectively. Tumor development was monitored using bioluminescence imaging. Docetaxel (Dt) pharmacokinetics and distribution to sites of tumor growth were determined. Disease progression was followed in animals treated with Dt alone and in combination with QLT0267, an Integrin Linked Kinase inhibitor. Tumor related morbidity was most rapid when cells were inoculated i.c., where disease progression was observed in brain, ovaries, adrenal glands, and lungs. Dt pharmacokinetics were comparable regardless of the model used (mean plasma AUC0-24 hrs 482.6 ng/ml*hr), however, Dt levels were lowest in those tissues developing disease following i.c. cell injection. Treatment with low dose Dt (5 mg/kg) increased overall survival and reduced tumor cell growth in all three models but the activity was greatest in mice with orthotopic tumors. Higher doses of Dt (15 mg/kg) was able to prolong survival in animals bearing i.p. tumors but not i.c. tumors. Addition of QLT0267 provided no added benefit above Dt alone in the disseminated model. These studies highlight a need for more comprehensive in vivo efficacy studies designed to assess multiple disease models and multiple endpoints, focusing analysis of drug parameters on the most chemoresistant disease.
Pathological links between neurodegenerative disease and cancer are emerging. LRRK2 overactivity contributes to Parkinson’s disease, whereas our previous analyses of public cancer patient data revealed that decreased LRRK2 expression is associated with lung adenocarcinoma (LUAD). The clinical and functional relevance of LRRK2 repression in LUAD is unknown. Here, we investigated associations between LRRK2 expression and clinicopathological variables in LUAD patient data and asked whether LRRK2 knockout promotes murine lung tumorigenesis. In patients, reduced LRRK2 was significantly associated with ongoing smoking and worse survival, as well as signatures of less differentiated LUAD, altered surfactant metabolism and immunosuppression. We identified shared transcriptional signals between LRRK2-low LUAD and postnatal alveolarization in mice, suggesting aberrant activation of a developmental program of alveolar growth and differentiation in these tumors. In a carcinogen-induced murine lung cancer model, multiplex IHC confirmed that LRRK2 was expressed in alveolar type II (AT2) cells, a main LUAD cell-of-origin, while its loss perturbed AT2 cell morphology. LRRK2 knockout in this model significantly increased tumor initiation and size, demonstrating that loss of LRRK2, a key Parkinson’s gene, promotes lung tumorigenesis.
Purpose: To provide proof-of-concept data to support use of Doxil-liposomal topotecan (Topophore C) combinations to treat ovarian cancer.Experimental Design: ES-2, OVCAR-3, and SKOV-3 ovarian cancer cell lines were treated with doxorubicin-topotecan combinations by exposing the cells to drugs from 1 to 72 hours. Pharmacokinetic analysis was conducted following administration of liposomal formulations of these drugs alone and in combination. Efficacy assessments were completed in ES-2 and SKOV-3 ovarian cancer models.Results: On the basis of drug doses capable of achieving 50% reduction in cell viability over 72 hours, doxorubicin-topotecan combinations were additive in SKOV-3 but highly synergistic in ES-2 and OVCAR-3 cells. Favorable drug-drug interactions increased with increased drug exposure time. Topophore C pharmacokinetic remained unaffected when co-administered with Doxil. In the ES-2 model, Doxil at maximum tolerated dose (MTD 7.5 mg/kg) in combination with free topotecan (MTD 15 mg/kg) did not enhance median survival time (MST) over that achieved with topotecan alone. In contrast, MST was increased to 52 days with combination of Topophore C (MTD 2.5 mg/kg) and Doxil (7.5 mg/kg) compared with untreated animals (MST 18 days) or those treated with Topophore C alone (MTD 5 mg/kg, MST 40 days). In the SKOV-3 model, combination treatments showed better therapeutic efficacy than the individual drugs.Conclusions: Topotecan-doxorubicin combinations produced additive or synergistic effects which were best achieved when the tumor cells were exposed to drugs over extended time. Doxil-Topophore C combinations are therapeutically superior as judged in two ovarian cancer models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.