The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG(2000)) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG(2000). At this proportion of DSPE-PEG(2000), the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG(2000) in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.
BackgroundChemotherapy for glioblastoma (GBM) patients is compromised in part by poor perfusion in the tumor. The present study evaluates how treatment with liposomal formulation of irinotecan (Irinophore C™), and other liposomal anticancer drugs, influence the tumor vasculature of GBM models grown either orthotopically or subcutaneously.MethodsLiposomal vincristine (2 mg/kg), doxorubicin (Caelyx®; 15 mg/kg) and irinotecan (Irinophore C™; 25 mg/kg) were injected intravenously (i.v.; once weekly for 3 weeks) in Rag2M mice bearing U251MG tumors. Tumor blood vessel function was assessed using the marker Hoechst 33342 and by magnetic resonance imaging-measured changes in vascular permeability/flow (Ktrans). Changes in CD31 staining density, basement membrane integrity, pericyte coverage, blood vessel diameter were also assessed.ResultsThe three liposomal drugs inhibited tumor growth significantly compared to untreated control (p < 0.05-0.001). The effects on the tumor vasculature were determined 7 days following the last drug dose. There was a 2-3 fold increase in the delivery of Hoechst 33342 observed in subcutaneous tumors (p < 0.001). In contrast there was a 5-10 fold lower level of Hoechst 33342 delivery in the orthotopic model (p < 0.01), with the greatest effect observed following treatment with Irinophore C. Following treatment with Irinophore C, there was a significant reduction in Ktrans in the orthotopic tumors (p < 0.05).ConclusionThe results are consistent with a partial restoration of the blood-brain barrier following treatment. Further, treatment with the selected liposomal drugs gave rise to blood vessels that were morphologically more mature and a vascular network that was more evenly distributed. Taken together the results suggest that treatment can lead to normalization of GBM blood vessel the structure and function. An in vitro assay designed to assess the effects of extended drug exposure on endothelial cells showed that selective cytotoxic activity against proliferating endothelial cells could explain the effects of liposomal formulations on the angiogenic tumor vasculature.
The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients.
Purpose: To examine the antitumor effects of Irinophore C, a nanopharmaceutical formulation of irinotecan, on the tissue morphology and function of tumor vasculature in HT-29 human colorectal tumors. Experimental Design: Fluorescence microscopy was used to map and quantify changes in tissue density, tumor vasculature, hypoxia, and the distribution of Hoechst 33342, a perfusion marker, and the anticancer drug, doxorubicin. Noninvasive magnetic resonance imaging was used to quantify K trans , the volume transfer constant of a solute between the blood vessels and extracellular tissue compartment of the tumor, as a measure of vascular function. Following treatment with Irinophore C, 19F magnetic resonance spectroscopy was used to monitor the delivery of 5-fluorouracil (5-FU) to the tumor tissue, whereas scintigraphy was used to quantify the presence of bound [ ), and 5-FU (P = 0.0002) in the tumor. Vascular endothelial growth factor and interleukin-8, two proangiogenic factors, were down-regulated, whereas the antiangiogenic factorTIMP-1was up-regulated in Irinophore C-treated tumors. Conclusions: Irinophore C treatment improves the vascular function of the tumor, thereby reducing tumor hypoxia and increasing the delivery and accumulation of a second drug. Reducing hypoxia would enhance radiotherapy, whereas improving delivery of a second drug to the tumor should result in higher cell kill.The clinical management of metastatic disease originating from colon/colorectal cancer remains challenging. The liver is the most common site of distant metastases for colorectal cancer, with 70% of patients presenting with liver metastases followed by the lungs, bone, and brain (1, 2). At present, the only cure is complete surgical removal of the primary tumor if diagnosed early; however, up to 45% of these patients still relapse with metastatic disease. Standard of care for first-line therapy in patients is a combination of 5-fluorouracil (5-FU; plus leucovorin) with either irinotecan (FOLFIRI) or oxaliplatin (FOLFOX; ref.3). The treatments are associated with prolonged median survivals of 18 to 21 months. Capecitabine, an oral fluoropyrimidine carbamate, has also been used in combination with 5-FU, and clinical data suggest that this combination is comparable with the FOLFIRI and FOLFOX regimens (4, 5). In practice, however, combination therapy with capecitabine is limited because of severe toxicities such as hand-foot syndrome, diarrhea, nausea, vomiting, and bone marrow suppression (4, 5). More recently, monoclonal antibodies targeting the epidermal growth factor receptor, such as cetuximab and panitumumab, have been used in combination with standard chemotherapy with promising results (6). The safety and efficacy of bevacizumab, the monoclonal antibody that targets vascular endothelial growth factor (VEGF; ref. 7), in combination with FOLFIRI or FOLFOX, was also evaluated recently (8,9). Although both studies were carried out with small Cancer Therapy: Preclinical
Purpose: To assess the pharmacokinetics, tumor drug accumulation, and therapeutic activity of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.