We sought to identify amino acid neurotransmitter candidates within the nucleus of the solitary tract in rats. Twenty endogenous amino acids were quantified by reverse-phase HPLC with fluorescence detection (30-fmol limit). Micropunches (1 mm) of the intermediate area of the solitary nucleus were prepared, and the amino acid content determined. Of all the components measured, the putative transmitters Glu, Gly, gamma-aminobutyric acid, taurine, Asp, and Ala appeared in greatest concentrations. Bilateral micropunches superfused in vitro with buffered medium containing 56 mM potassium released Glu, gamma-aminobutyric acid, and Gly in a significant manner (p less than 0.05) compared with basal levels. With Glu, 78% was calcium-dependent and, therefore, presumably from nerve endings; 99% of gamma-aminobutyric acid and 42% of Gly were dependent on calcium. After removal of the nodose ganglion, a bilateral decrease in the calcium-dependent release of Glu and gamma-aminobutyric acid, but not Gly, was observed; decreases were significant ipsilateral to the site of ablation. We conclude that (a) Glu is a transmitter of primary afferents in the nucleus of the solitary tract; (b) glutamatergic afferents may interact with gamma-aminobutyric acid system(s) in this region; (c) Gly also may participate in the mediation and/or modulation of cardiovascular or other visceral reflexes; and (d) amino acid neurotransmission may play an integral role in the neurogenic control of arterial pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.