The prison setting presents not only challenges, but also opportunities, for the prevention and treatment of HIV, viral hepatitis, and tuberculosis. We did a comprehensive literature search of data published between 2005 and 2015 to understand the global epidemiology of HIV, hepatitis C virus (HCV), hepatitis B virus (HBV), and tuberculosis in prisoners. We further modelled the contribution of imprisonment and the potential impact of prevention interventions on HIV transmission in this population. Of the estimated 10·2 million people incarcerated worldwide on any given day in 2014, we estimated that 3·8% have HIV (389 000 living with HIV), 15·1% have HCV (1 546 500), 4·8% have chronic HBV (491 500), and 2·8% have active tuberculosis (286 000). The few studies on incidence suggest that intraprison transmission is generally low, except for large-scale outbreaks. Our model indicates that decreasing the incarceration rate in people who inject drugs and providing opioid agonist therapy could reduce the burden of HIV in this population. The prevalence of HIV, HCV, HBV, and tuberculosis is higher in prison populations than in the general population, mainly because of the criminalisation of drug use and the detention of people who use drugs. The most effective way of controlling these infections in prisoners and the broader community is to reduce the incarceration of people who inject drugs.
The ongoing Ebola outbreak poses an alarming risk to the countries of West Africa and beyond. To assess the effectiveness of containment strategies, we developed a stochastic model of Ebola transmission between and within the general community, hospitals, and funerals, calibrated to incidence data from Liberia. We find that a combined approach of case isolation, contact-tracing with quarantine, and sanitary funeral practices must be implemented with utmost urgency in order to reverse the growth of the outbreak. As of 19 September, under status quo, our model predicts that the epidemic will continue to spread, generating a predicted 224 (134 to 358) daily cases by 1 December, 280 (184 to 441) by 15 December, and 348 (249 to 545) by 30 December.
Reduced access to healthcare during the outbreak substantially increased mortality rates from other diseases.
Background A substantial scale-up in public health response is needed to control the unprecedented Ebola virus disease (EVD) epidemic in West Africa. Current international commitments seek to expand intervention capacity in three areas: new EVD Treatment Centers (ETCs); case ascertainment through contact tracing; and household protective kit allocation. Methods We developed a transmission model of Ebola virus that we fitted to reported EVD cases and deaths in Montserrado County, Liberia. We used this model to evaluate effectiveness of expanding ETCs, improving case ascertainment, and allocating protective kits for controlling the outbreak in Montserrado. Findings We estimated the basic reproductive number for EVD in Montserrado to be 2·49 [2·38–2·60]. We expect that allocating 4,800 additional ETC beds and increasing case ascertainment fivefold in November can avert 77312 [68400–85870] cases relative to the status quo by 15 December. Complementing these measures with protective kit allocation increases the expectation as high as 97940 [90096–105606] cases. If deployed by 15 October, equivalent interventions would have been expected to avert 137432 [129736–145874] cases. If delayed to 15 November, we expect the interventions will at best avert 53957 [49963–60490] cases. Interpretation The number of ETC beds needed to effectively control EVD in Montserrado substantially exceeds the total pledged by the United States to West Africa. Accelerated case ascertainment is required to maximize effectiveness of expanding ETC capacity. Distributing protective kits can further augment EVD prevention. Our findings highlight the rapidly closing window of opportunity for controlling the outbreak and averting a catastrophic toll of EVD cases and deaths. Funding NIH: U01-GM087719, U01-GM105627, K24-DA017072
Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination ‘as a public health problem’ when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models’ predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.