Hydrogen peroxide (H2O2) has been proposed as an agent to mitigate toxic cyanobacterial blooms due to the heightened sensitivity of cyanobacteria to reactive oxygen species relative to eukaryotic organisms. Here, experiments were conducted using water from four diverse, eutrophic lake ecosystems to study the effects of H2O2 on cyanobacteria and non-target members of the microbial community. H2O2 was administered at 4 µg L−1 and a combination of fluorometry, microscopy, flow cytometry, and high throughput DNA sequencing were used to quantify the effects on eukaryotic and prokaryotic plankton communities. The addition of H2O2 resulted in a significant reduction in cyanobacteria levels in nearly all experiments (10 of 11), reducing their relative abundance from, on average, 85% to 29% of the total phytoplankton community with Planktothrix being highly sensitive, Microcystis being moderately sensitive, and Cylindrospermopsis being most resistant. Concurrently, eukaryotic algal levels increased in 75% of experiments. The bacterial phyla Actinobacteria, cyanobacteria, Planctomycetes, and Verrucomicrobia were most negatively impacted by H2O2, with Actinobacteria being the most sensitive. The ability of H2O2 to reduce, but not fully eliminate, cyanobacteria from the eutrophic water bodies studied here suggests it may not be an ideal mitigation approach in high biomass ecosystems.
Diurnal variations in pH and dissolved oxygen (DO) concentrations are common seasonal phenomena in many eutrophic estuaries, yet few studies have investigated the concurrent effects of low pH and low DO on marine organisms inhabiting these coastal systems. Here, we assess the effects of diurnal variations in pH and DO on the early-life history of two bivalve species native to Northeast US estuaries, the bay scallop (Argopecten irradians) and hard clam (Mercenaria mercenaria). In one set of experiments, larval-and juvenile-life stage bivalves were exposed to ambient conditions (pH T ∼ 7.9), two continuously-low pH levels (pH T ∼ 7.3 and 7.6), and diurnal fluctuations between the ambient and low conditions yielding mean pH levels equal to the intermediate pH levels. In a second set of experiments, larval bivalves were exposed to ambient conditions (pH T ∼ 7.9, DO ∼ 7 mg L −1 ), two levels of low pH and DO (pH T ∼ 7.2, DO ∼1 mg L −1 ; pH ∼ 7.4, DO ∼ 4 mg L −1 T ) and diurnal fluctuations of both pH and DO between the ambient and low pH/DO levels that resulted in mean pH and DO levels equal to the intermediate pH and DO levels. Diurnal acidification treatments with ambient DO levels yielded survival rates for both species at both life stages that were consistent with the survival of individuals exposed to the same mean level of chronic pH with juveniles being more resistant to acidification than larvae. In contrast, when both pH and DO varied diurnally, the survival rates of larval bivalves were significantly lower than the survival of individuals chronically exposed to the same mean levels of pH and DO, an indication that bivalves were physiologically more vulnerable to concurrent fluctuations of both parameters compared to acidification alone. While both species displayed sensitivities to diurnal fluctuations in pH and DO, scallops were relatively more susceptible than hard clams. Since many shallow eutrophic estuaries presently experience diurnal cycles of both pH and DO when early-life stages of bivalves are present in estuaries, the populations of the bivalves studied are likely impacted by these conditions which are likely to intensify with climate change.
Marine biotoxin-contaminated seafood has caused thousands of poisonings worldwide this century. Given these threats, there is an increasing need for improved technologies that can be easily integrated into coastal monitoring programs. This study evaluates approaches for monitoring toxins associated with recurrent toxin-producing Alexandrium and Dinophysis blooms on Long Island, NY, USA, which cause paralytic and diarrhetic shellfish poisoning (PSP and DSP), respectively. Within contrasting locations, the dynamics of pelagic Alexandrium and Dinophysis cell densities, toxins in plankton, and toxins in deployed blue mussels (Mytilus edulis) were compared with passive solid-phase adsorption toxin tracking (SPATT) samplers filled with two types of resin, HP20 and XAD-2. Multiple species of wild shellfish were also collected during Dinophysis blooms and used to compare toxin content using two different extraction techniques (single dispersive and double exhaustive) and two different toxin analysis assays (liquid chromatography/mass spectrometry and the protein phosphatase inhibition assay (PP2A)) for the measurement of DSP toxins. DSP toxins measured in the HP20 resin were significantly correlated (R2 = 0.7–0.9, p < 0.001) with total DSP toxins in shellfish, but were detected more than three weeks prior to detection in deployed mussels. Both resins adsorbed measurable levels of PSP toxins, but neither quantitatively tracked Alexandrium cell densities, toxicity in plankton or toxins in shellfish. DSP extraction and toxin analysis methods did not differ significantly (p > 0.05), were highly correlated (R2 = 0.98–0.99; p < 0.001) and provided complete recovery of DSP toxins from standard reference materials. Blue mussels (Mytilus edulis) and ribbed mussels (Geukensia demissa) were found to accumulate DSP toxins above federal and international standards (160 ng g−1) during Dinophysis blooms while Eastern oysters (Crassostrea virginica) and soft shell clams (Mya arenaria) did not. This study demonstrated that SPATT samplers using HP20 resin coupled with PP2A technology could be used to provide early warning of DSP, but not PSP, events for shellfish management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.