Intracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector, which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting, but overlooked finding, is that other cell types and even non-phagocytic cells have been found to be infected by Leishmania spp. Nevertheless, the mechanisms by which Leishmania invades such cells had not been previously studied. Here, we show that L. amazonensis can induce their own entry into fibroblasts independently of actin cytoskeleton activity, and, thus, through a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions, such as Ca 2+ signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair.This article has an associated First Person interview with the first author of the paper.
Intracellular parasites of the genus Leishmania are the causative agents of human leishmaniasis, a widespread emergent tropical disease. The parasite is transmitted by the bite of a hematophagous sandfly vector that inoculates motile flagellated promastigote forms into the dermis of the mammalian host. After inoculation, parasites are ultimately captured by macrophages and multiply as round-shaped amastigote forms. Macrophages seem not to be the first infected cells since parasites were observed invading neutrophils first whose leishmania-containing apoptotic bodies were latter captured by macrophages, thereby becoming infected. The fact that Leishmania spp are able to live and replicate inside immune phagocytic cells and that macrophages are the main cell type found infected in chronicity created the perception that Leishmania spp are passive players waiting to be captured by phagocytes. However, several groups have described the infection of non-phagocytic cells in vivo and in vitro. The objective of this work was to study the cellular mechanisms involved in the invasion of non-professional phagocytes by Leishmania. We show that promastigotes of L.amazonensis actively induces invasion in fibroblasts without cytoskeleton activity, thus by a mechanism that is distinct from phagocytosis. Inside fibroblasts parasites transformed in amastigotes, remained viable for at least two weeks and re-transformed in promastigotes when returned to insect vector conditions. Similarly to what was observed for T. cruzi, infection involves calcium signaling, recruitment and exocytosis of lysosomes involved in plasma membrane repair and lysosome-triggered endocytosis. Conditions that alter lysosomal function such as cytochalasin-D and brefeldin-A treatment or the knockout of host cell lysosomal proteins LAMP-1 and 2 dramatically affected invasion. Likewise, triggering of lysosomal exocytosis and lysosome-dependent plasma membrane repair by low doses of streptolysin-O dramatically increased parasite entry. Together our results show that L.amazonensis promastigotes are able to take advantage of calcium-dependent lysosomal exocytosis and lysosome-induced endocytosis to invade and persist in non-phagocytic cells.AUTHOR SUMMARYIntracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting but overlooked finding on Leishmania infection is that non-phagocytic cells have also been found infected by amastigotes. Nevertheless, the mechanisms by which Leishmania invades non-phagocytic cells were not studied to date. Here we show that L. amazonensis can actively induce their own entry into fibroblasts independently of actin cytoskeleton activity, thus by a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions such as calcium signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair and whose positioning and content interfere in invasion. Parasites were able to replicate and remained viable in fibroblasts, suggesting that cell invasion trough the mechanism demonstrated here could serve as a parasite hideout and reservoir, facilitating infection amplification and persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.