An elevated number of women of reproductive age are overweight, predisposing their offspring to metabolic and neuropsychiatric disorders. Gut microbiota is influenced by maternal factors, and has been implicated in the pathogenesis of neurodegenerative diseases. Our aim was to explore the effects of maternal high-fat feeding on the relationship linking gut microbiota and cognitive development in the offspring. Murine offspring born to dams undergoing normal diet (NDm) and high-fat diet (HFDm) were studied at 1 or 6 months of age to assess cognitive function by Y-maze test, cerebral glucose metabolism and insulin sensitivity by Positron Emission Tomography, brain density by Computed Tomography, microbiota profile (colon, caecum) and inferred metabolic pathways (KEGG analysis) by 16S ribosomal RNA sequencing. From 3 weeks post-weaning, mice born to HFDm developed hyperphagia and overweight, showing reduction in memory and exploratory behaviour, and brain insulin resistance in adulthood. We identified a panel of bacteria characterizing offspring born to HFD dams from early life, and correlating with dysfunction in memory and exploratory behaviour in adults (including Proteobacteria phylum,
Parabacteroides
and unclassified
Rikenellaceae
genera). Microbiota-derived metabolic pathways involved in fatty acid, essential aminoacid and vitamin processing, sulphur metabolism, glutaminergic activation and Alzheimer’s disease were differently present in the HFDm and NDm offspring groups. Our results document tight relationships between gut dysbiosis and memory and behavioural impairment in relation to maternal HFD. Persistent bacterial signatures induced by maternal HFD during infancy can influence cognition during adulthood, opening the possibility of microbiota-targeted strategies to contrast cognitive decline.
Similarities in neural activation patterns in obese and substance‐dependent subjects led to the food addiction concept, but studies exploiting this issue for obesity stratification are missing. We assessed brain activation in response to food cues using 18F‐2‐fluoro‐2‐deoxy‐glucose‐PET in 36 overweight women, stratified by low or high food addiction groups according to the Yale Food Addiction Scale (YFAS). Assessments were repeated after a 3‐month diet. We found greater activation in thalamus, hypothalamus, midbrain, putamen, and occipital cortex (reward), but not in prefrontal and orbitofrontal cortices (control/reward receipt) in the high‐YFAS versus low‐YFAS group. In high‐YFAS subjects, orbitofrontal responsiveness was inversely related to YFAS severity and hunger rating, and positive associations were observed between regional brain activation and lipid intake. A 3‐month diet abolished group differences in brain activation. Our data suggest that food addiction distinguishes an overweight phenotype that can be reversed by diet, opening to personalized strategies in obesity treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.