Glucokinase (GK) is a glycolytic key enzyme that functions as a glucose sensor in the pancreatic -cell, where it governs glucose-stimulated insulin secretion (GSIS). Heterozygous inactivating mutations in the glucokinase gene (GCK) cause a mild form of diabetes (maturityonset diabetes of the young [MODY]2), and activating mutations have been associated with a mild form of familial hyperinsulinemic hypoglycemia. We describe the first case of severe persistent hyperinsulinemic hypoglycemia due to a "de novo" mutation in GCK (Y214C). A baby girl presented with hypoglycemic seizures since the first postnatal day as well as with inappropriate hyperinsulinemia. Severe hypoglycemia persisted even after treatment with diazoxide and subtotal pancreatectomy, leading to irreversible brain damage. Pancreatic histology revealed abnormally large and hyperfunctional islets. The mutation is located in the putative allosteric activator domain of the protein. Functional studies of purified recombinant glutathionyl Stransferase fusion protein of GK-Y214C showed a sixfold increase in its affinity for glucose, a lowered cooperativity, and increased k cat . The relative activity index of GK-Y214C was 130, and the threshold for GSIS predicted by mathematical modeling was 0.8 mmol/l, compared with 5 mmol/l in the wild-type enzyme. In conclusion, we have identified a de novo GCK activating mutation that causes hyperinsulinemic hypoglycemia of exceptional severity. These findings demonstrate that the range of the clinical phenotype caused by GCK mutations varies from complete insulin deficiency to extreme hyperinsulinemia. Diabetes
The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48 RHNVRW 53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.
Frataxin deficiency is the main cause of Friedreich ataxia, an autosomal recessive neurodegenerative disorder. Frataxin function in mitochondria has not been fully explained yet. In this work, we show that Saccharomyces cerevisiae frataxin orthologue Yfh1p interacts physically with succinate dehydrogenase complex subunits Sdh1p and Sdh2p of the yeast mitochondrial electron transport chain and also with electron transfer flavoprotein complex ETFalpha and ETFbeta subunits from the electron transfer flavoprotein complex. Genetic synthetic interaction experiments confirmed a functional relationship between YFH1 and succinate dehydrogenase genes SDH1 and SDH2. We also demonstrate a physical interaction between human frataxin and human succinate dehydrogenase complex subunits, suggesting also a key role of frataxin in the mitochondrial electron transport chain in humans. Consequently, we suggest a direct participation of the respiratory chain in the pathogenesis of the Friedreich ataxia, which we propose to be considered as an OXPHOS disease.
The spindle assembly checkpoint (SAC) generates a diffusible protein complex that prevents anaphase until all chromosomes are properly attached to spindle microtubules. A key step in SAC initiation is the recruitment of MAD1 to kinetochores, which is generally thought to be governed by the microtubule-kinetochore (MT-KT) attachment status. However, we demonstrate that the recruitment of MAD1 via BUB1, a conserved kinetochore receptor, is not affected by MT-KT interactions in human cells. Instead, BUB1:MAD1 interaction depends on BUB1 phosphorylation, which is controlled by a biochemical timer that integrates counteracting kinase and phosphatase effects on BUB1 into a pulse-generating incoherent feedforward loop. We propose that this attachment-independent timer serves to rapidly activate the SAC at mitotic entry, before the attachment-sensing MAD1 receptors have become fully operational. The BUB1-centered timer is largely impervious to conventional anti-mitotic drugs, and it is, therefore, a promising therapeutic target to induce cell death through permanent SAC activation.
In Saccharomyces cerevisiae, the family of ATF/CREB transcriptional regulators consists of a repressor, Acr1 (Sko1), and two activators, Aca1 and Aca2. The AP-1 factor Gen4 does not activate transcription through ATF/CREB sites in vivo even though it binds these sites in vitro. Unlike ATF/CREB activators in other species, Aca1-and Aca2-dependent transcription is not affected by protein kinase A or by stress, and Aca1 and Aca2 are not required for Hog1-dependent salt induction of transcription through an optimal ATF/CREB site. Aca2 is important for a variety of biological functions including growth on nonoptimal carbon sources, and Aca2-dependent activation is modestly regulated by carbon source. Strains lacking Aca1 are phenotypically normal, but overexpression of Aca1 suppresses some defects associated with the loss of Aca2, indicating a functional overlap between Aca1 and Aca2. Acr1 represses transcription both by recruiting the Cyc8-Tup1 corepressor and by directly competing with Aca1 and Aca2 for target sites. Acr1 does not fully account for osmotic regulation through ATF/CREB sites, and a novel Hog1-dependent activator(s) that is not a bZIP protein is required for ATF/CREB site activation in response to high salt. In addition, Acr1 does not affect a number of phenotypes that arise from loss of Aca2. Thus, members of the S. cerevisiae ATF/CREB family have overlapping, but distinct, biological functions and target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.