The synthesis of anisotropic redox-active polyoxometalates (POMs) that can switch between multiple states is critical for understanding the mechanism of assembly of structures with a high aspect ratio, as well as for their application in electronic devices. However, a synthetic methodology for the controlled growth of such clusters is lacking. Here we describe a strategy, using the heteroanion-directed assembly, to produce a family of 10 multi-layered, anisotropic POM cages templated by redox-active pyramidal heteroanions with the composition [W 16 Mo 2 O 54 (XO 3 )] n − , [W 21 Mo 3 O 75/76 (XO 3 ) 2 ] m − , and [W 26 Mo 4 O 93 (XO 3 ) 3 ] o − for the double, triple, and quadruple layered clusters, respectively. It was found that the introduction of reduced molybdate is essential for self-assembly and results in mixed-metal (W/Mo) and mixed-valence (W VI /Mo V ) POM cages, as confirmed by an array of analytical techniques. To probe the archetype in detail, a tetrabutyl ammonium (TBA) salt derivative of a fully oxidized two-layered cage is produced as a model structure to confirm that all the cages are a statistical mixture of isostructures with variable ratios of W/Mo. Finally, it was found that multilayered POM cages exhibit dipolar relaxations due to the presence of the mixed valence W VI /Mo V metal centers, demonstrating their potential use for electronic materials.
Design of experiments (DOE) is a key method for optimizing physical processes by altering multiple variables at once to assess their effect. In chemistry, DOE explores a wider parameter space than the dominant “One Factor at a Time” (OFAT) method providing greater opportunity to explore the factors that can be used to optimize yield, purity, and to explore chemical space for new compounds. One area of chemistry that suffers from low yields and poor reproducibility but is full of hard to predict and interesting materials is polyoxometalate cluster science. Herein, we developed a DOE analysis methodology to explore the parameter space of polyoxometalate cluster formation to explore the subtle input effects that are known to have an impact on the product discovery, purity, and stability under the preparation conditions. Using a Plackett–Burman screening design, we analyzed the effect of six synthetic parameters in only 12 experiments, following up with a full factorial analysis of the three most significant factors to identify the key parameters in the successful synthesis of each. Based on this, we provide a useful template that produces the input data for automated synthesis based on DOE on other synthetic procedures. In our POM test cases, redox agent stoichiometry was found in three of the four systems studied to be significant factors with pH and temperature, which also found to be commonly important. The insights derived from this analysis were applied to design optimized synthetic procedures and improve the yield of the product by on average >33% from the highest reported literature yield. Thus, the DOE methodology outlined here is shown to yield insights into reaction optimization rapidly with facile experimental design and analysis even for complex multivariate synthetic procedures.
The fabrication of redox-active polyoxometalates (POMs) that can switch between multiple states is critical for their application in electronic devices, yet, a sophisticated synthetic methodology is not well developed for such cluster types. Here we describe the heteroanion-directed and reduction-driven assembly of a series of multi-layered POM cages 1-10 templated by 1-3 redox-active pyramidal heteroanions. The heteroanions greatly affect the selfassembly of the resultant POM cages, leading to the generation of unprecedented three-layered peanut-shaped - 4, 7 and 8 - or bulletshaped - 5 and 6 - structures. The introduction of reduced molybdate is essential for the self-assembly of the compounds and results in mixed-metal (W/Mo), and mixed-valence (WVI/MoV) 1-10, as confirmed by redox titration, UV-Vis-NIR, NMR spectroscopy and mass spectrometry. 11, the tetrabutyl ammonium (TBA) salt derivative of the fully oxidized 3, is produced as a model structure for measurements to confirm that 1-10 are a statistical mixture of isostructural clusters with different ratios of W/Mo. Finally, multilayered POM cages exhibit dipole relaxations due to the presence of mixed valence WVI/MoV metal centers, demonstrating their potential uses for electronic materials.
The fabrication of redox-active polyoxometalates (POMs) that can switch between multiple states is critical for their application in electronic devices, yet, a sophisticated synthetic methodology is not well developed for such cluster types. Here we describe the heteroanion-directed and reduction-driven assembly of a series of multi-layered POM cages 1-10 templated by 1-3 redox-active pyramidal heteroanions. The heteroanions greatly affect the selfassembly of the resultant POM cages, leading to the generation of unprecedented three-layered peanut-shaped - 4, 7 and 8 - or bulletshaped - 5 and 6 - structures. The introduction of reduced molybdate is essential for the self-assembly of the compounds and results in mixed-metal (W/Mo), and mixed-valence (WVI/MoV) 1-10, as confirmed by redox titration, UV-Vis-NIR, NMR spectroscopy and mass spectrometry. 11, the tetrabutyl ammonium (TBA) salt derivative of the fully oxidized 3, is produced as a model structure for measurements to confirm that 1-10 are a statistical mixture of isostructural clusters with different ratios of W/Mo. Finally, multilayered POM cages exhibit dipole relaxations due to the presence of mixed valence WVI/MoV metal centers, demonstrating their potential uses for electronic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.