Triboelectric nanogenerators (TENGs), as a promising energy harvesting technology, have been rapidly developed in recent years. However, the research based on fully flexible and environmentally friendly TENGs is still limited. Herein, for the first time, a hydrogel‐based triboelectric nanogenerator (Hydrogel‐TENG) with high flexibility, recyclability, and environmental friendliness simultaneously has been demonstrated. The standard Hydrogel‐TENG can generate a maximum output power of 2 mW at a load resistance of 10 MΩ. The tube‐shaped Hydrogel‐TENG can harvest mechanical energy from various human motions, including bending, twisting, and stretching. Furthermore, the system can serve as self‐powered sensors to detect the human motions. Additionally, the utilized Polyvinyl Alcohol hydrogel employed in this study is recyclable to benefit for fabricating the renewable TENG. The open‐circuit voltage of renewed hydrogel‐TENG can reach up to 92% of the pristine output voltage. This research will pave a potential approach for the development of flexible energy sources and self‐powered motion sensors in environmentally friendly way.
Magnetic-induced luminescence (MIL) is realized via a strain-mediated coupling strategy. MIL composite laminates composed of magnetic actuator and phosphor phases are developed. The MIL performance is tested under low magnetic fields at room temperature. The results provide a novel type of promising luminescent and magnetic material for developing some new concept devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.