The modern concept of DNA-based barcoding for cataloguing biodiversity was proposed in 2003 by first adopting an approximately 600 bp fragment of the mitochondrial COI gene to compare via nucleotide alignments with known sequences from specimens previously identified by taxonomists. Other standardized regions meeting barcoding criteria then are also evolving as DNA barcodes for fast, reliable and inexpensive assessment of species composition across all forms of life, including animals, plants, fungi, bacteria and other microorganisms. Consequently, global DNA barcoding campaigns have resulted in the formation of many online workbenches and databases, such as BOLD system, as barcode references, and facilitated the development of mini-barcodes and metabarcoding strategies as important extensions of barcode techniques. Here we intend to give an overview of the characteristics and features of these barcode markers and major reference libraries existing for barcoding the planet’s life, as well as to address the limitations and opportunities of DNA barcodes to an increasingly broader community of science and society.
Background: Accurate taxonomic identification is the cornerstone for monitoring, conservation and management of ecological resources. China has the highest biodiversities and the richest species assemblages in the world, but is lacking in sufficient assessment to the abundant genetic variability. DNA barcoding is a proven tool employing sequence information for rapid and unambiguous species delineation. However, the ability of barcodes to distinguish species that are archaic and distinctive evolutionary lines remains largely untested.Methods: In order to investigate the resources of terrestrial animals in China, regions from mitochondrial COI and 16S are barcoded for 395 specimens belonging to 54 selected species, many of which are indigenous representatives in danger. High success rate of PCR amplification is achieved by using universal COI and 16S primers with many numts pseudogenes co-amplified from mammalian samples.Results: Application of barcodes to flag species is generally straightforward since no COI or 16S haplotypes are shared between closely related species. Barcoding gap, species resolution and phylogenetic relationships relying on our barcode libraries are further compared using distance and tree based approaches.Conclusion: Results show that the discriminatory power of the two barcode markers could differentiate on a case-by-case basis, and also suggest a careful consideration of the nuclear numts for barcoding studies as they might provide a new understanding for evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.