Exonic splicing regulatory sequences (ESRs) are cis-acting factor binding sites that regulate constitutive and alternative splicing. A computational method based on the conservation level of wobble positions and the overabundance of sequence motifs between 46,103 human and mouse orthologous exons was developed, identifying 285 putative ESRs. Alternatively spliced exons that are either short in length or contain weak splice sites show the highest conservation level of those ESRs, especially toward the edges of exons. ESRs that are abundant in those subgroups show a different distribution between constitutively and alternatively spliced exons. Representatives of these ESRs and two SR protein binding sites were shown, experimentally, to display variable regulatory effects on alternative splicing, depending on their relative locations in the exon. This finding signifies the delicate positional effect of ESRs on alternative splicing regulation.
During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus "marking" them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.
Exon-intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon-intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 39 and 59 splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery.[Supplemental material is available for this article.]In the process of splicing, introns are removed from an mRNA precursor (pre-mRNA), and exons are ligated to form a mature mRNA (Black 2003). Exons and introns are recognized in the splicing process by many different signals and interactions along the exonintron structure. Several signals along the pre-mRNA help the splicing machinery to recognize exon-intron junctions: The 39 and 59 splice sites (39ss and 59ss) located on both exon-intron junctions, and the branch site and polypyrimidine tract (PPT) located upstream of the 39ss (Black 2003). In alternative splicing, the splicing mechanism produces more than one mRNA from a single premRNA (Graveley 2001). This is done by the splicing of different sets of exons from a single pre-mRNA, resulting in an increased number of protein isoforms that can be synthesized from one gene. Previous studies revealed that the percentage of exons undergoing alternative splicing is higher in vertebrates compared with invertebrates, and in human compared with other vertebrates ). This suggests that alternative splicing has a major role in the production of higher levels of biological complexity.Exon-intron structure plays a major role in the recognition of exons by the splicing machinery. It was previously demon...
The Wnt signaling pathway is an evolutionary conserved system, having pivotal roles during animal development. When over-activated, this signaling pathway is involved in cancer initiation and progression. The canonical Wnt pathway regulates the stability of β-catenin primarily by a destruction complex containing a number of different proteins, including Glycogen synthase kinase 3β (GSK-3β) and Axin, that promote proteasomal degradation of β-catenin. As this signaling cascade is modified by various proteins, novel screens aimed at identifying new Wnt signaling regulators were conducted in our laboratory. One of the different genes that were identified as Wnt signaling activators was Aldolase C (ALDOC). Here we report that ALDOC, Aldolase A (ALDOA) and Aldolase B (ALDOB) activate Wnt signaling in a GSK-3β-dependent mechanism, by disrupting the GSK-3β-Axin interaction and targeting Axin to the dishevelled (Dvl)-induced signalosomes that positively regulate the Wnt pathway thus placing the Aldolase proteins as novel Wnt signaling regulators.
Background: Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.