To gain global insights into the role of the well-known repressive splicing regulator PTB we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB repressed and activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons, but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTB-activated to a PTB-repressed exon. Our results demonstrate that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.
During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus "marking" them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.
Various histone modifications decorate nucleosomes within transcribed genes. Among these, monoubiquitylation of histone H2B (H2Bub1) and methylation of histone H3 on lysines 36 (H3K36me2/3) and 79 (H3K79me2/3) correlate positively with gene expression. By measuring the progression of the transcriptional machinery along genes within live cells, we now report that H2B monoubiquitylation occurs cotranscriptionally and accurately reflects the advance of RNA polymerase II (Pol II). In contrast, H3K36me3 and H3K79me2 are less dynamic and represent Pol II movement less faithfully. High-resolution ChIP-seq reveals that H2Bub1 levels are selectively reduced at exons and decrease in an exon-dependent stepwise manner toward the 39 end of genes. Exonic depletion of H2Bub1 in gene bodies is highly correlated with Pol II pausing at exons, suggesting elongation rate changes associated with intron-exon structure. In support of this notion, H2Bub1 levels were found to be significantly correlated with transcription elongation rates measured in various cell lines. Overall, our data shed light on the organization of H2Bub1 within transcribed genes and single out H2Bub1 as a reliable marker for ongoing transcription elongation.
MicroRNA (miRNA) biogenesis initiates co-transcriptionally, but how the Microprocessor machinery pinpoints the locations of short precursor miRNA sequences within long flanking regions of the transcript is not known. Here we show that miRNA biogenesis depends on DNA methylation. When the regions flanking the miRNA coding sequence are highly methylated, the miRNAs are more highly expressed, have greater sequence conservation, and are more likely to drive cancer-related phenotypes than miRNAs encoded by unmethylated loci. We show that the removal of DNA methylation from miRNA loci leads to their downregulation. Further, we found that MeCP2 binding to methylated miRNA loci halts RNA polymerase II elongation, leading to enhanced processing of the primary miRNA by Drosha. Taken together, our data reveal that DNA methylation directly affects miRNA biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.