Iron(0) nanoparticles in ionic liquids (ILs) have been shown to catalyse the semi-hydrogenation of alkynes. In the presence of a nitrile-functionalised IL or acetonitrile, stereoselective formation of (Z)-alkenes was observed. The biphasic solvent system allowed facile separation and re-use of the catalyst.
The 5-year survival rate of patients suffering from head and neck squamous cell carcinoma (HNSCC) is unsatisfying despite the advances in carcinoma treatment. Recent studies suggest that stem cells can be used as a gene therapy carrier for cancer treatment. Stem cells produce different cytokines such as growth factors in a paracrine manner and cancer cells may show drug resistance in the presence of such growth factors. Reports in the literature concerning treatment of cancer using bone marrow derived stem cells (BMSC) are controversial, which led us to investigate the effects of paclitaxel on human HNSCC cell lines (FaDu and HLaC 78) cultivated simultaneously with BMSC in a transwell system (co-culture). Co-culture and HNSCC cell lines were treated with 10nM of paclitaxel for 24h. Morphology, viability and apoptosis were measured by microscopy, the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the Annexin V-propidium iodide test. The survival of HNSCC cell lines treated with paclitaxel in co-culture increased significantly compared to control cells. Apoptosis of HNSCC cell lines in co-culture was attenuated significantly. In conclusion, BMSC increase HNSCC resistance to treatment with paclitaxel in vitro. Tumor-stroma interactions are critical components of tumor biology including tumor invasion and metastatic potential. Therefore particular attention must be paid to the complex tumor-stroma interactions to fully understand how tumor cells become chemoresistant.
Industrial application of titanium dioxide nanoparticles (TiO(2) -NPs) as an additive in pharmaceutical and cosmetic products is increasing. However, the knowledge about the toxicity of this material is still incomplete and data concerning health and environmental safety and results of recent studies on TiO(2) nanotoxicology are inconsistent. The in vitro geno- and cytotoxicity of TiO(2) -NPs in the anatase crystal phase was evaluated in human peripheral blood lymphocytes from 10 male donors. Initially, transmission electron microscopy (TEM) was performed to describe particle morphology and size, the degree of particle aggregation, and the intracellular distribution. Cells were exposed to nanoparticles in increasing concentrations of 20, 50, 100, and 200 μg/ml for 24 hr. Cytotoxic effects were analyzed by trypan blue exclusion test and the single-cell microgel electrophoresis (comet) assay was applied to detect DNA double-strand breakage. TiO(2) -NPs were sphere shaped with a diameter of 15-30 nm. Despite dispersive pretreatment, a strong tendency to form aggregates was observed. Particles were detected in the cytoplasm of lymphocytes, but also a transfer into the nucleus was seen. The trypan blue exclusion test did not show any decrease in lymphocyte viability, and there was no evidence of genotoxicity in the comet assay for any of the tested concentrations. In conclusion, TiO(2) -NPs reached the cytoplasm as well as the nucleus and did not induce cyto- or genotoxic effects in human peripheral blood lymphocytes. Complement investigations on different human cell systems will be performed to estimate the biocompatibility of TiO(2) -NPs. Environ. Mol. Mutagen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.