The lower termite, Coptotermes gestroi (Isoptera: Rhinotermitidae), is originally from Southeast Asia and has become a pest in Brazil. The main goal of this study was to survey C. gestroi transcriptome composition. To accomplish this, we sequenced and analyzed 3003 expressed sequence tags (ESTs) isolated from libraries of worker heads. After assembly, 695 uniESTs were obtained from which 349 have similarity with known sequences. Comparison with insect genomes demonstrated similarity, primarily with genes from Apis mellifera (28%), Tribolium castaneum (28%) and Aedes aegypti (10%). Notably, we identified two endogenous cellulases in the sequences, which may be of interest for biotechnological applications. The results presented in this work represent the first genomic study of the Asian subterranean termite, Coptotermes gestroi.
Aims: To use the phage display technique to develop peptides with the capability to neutralize the cytotoxicity induced by Stx1 and Stx2 toxins produced by Shiga toxin-producing Escherichia coli (STEC). Methods and Results: The phage display technique permitted the development of three peptides, named PC7-12, P12-26 and PC7-30, which bind to the globotriaosylceramide (Gb3) receptor for Shiga toxins produced by STEC. Moreover, these peptides were capable of competing efficiently with the Shiga toxins for binding to Gb3. The peptides described herein partially inhibited the Stx-induced cytotoxicity of cell-free filtrates of STEC O157 : H7 and purified Stx toxins in Vero cells. The inhibition of lethality induced by Stx toxins in mice indicated that peptide PC7-30 inhibited the lethality caused by Stx1 (2LD 50 ) in mice. Conclusions: The phage display technique permitted the development of peptides that inhibited the cytotoxicity induced by Stx toxins in vitro. Peptide PC7-30 inhibited the lethality of Stx1 in vivo; this molecule would be a promising candidate for the development of therapeutic agents for STECrelated diseases in humans. Significance and Impact of the Study: The selection of Gb3, the common receptor for Stx1 and Stx2, may contribute to the development of efficient neutralizers for both toxins, and our approach would be an interesting alternative for the development of therapeutic molecules for the treatment of diseases caused by STEC strains.
Transient expression and electrophoretic mobility shift assay were used to investigate the cis elements and the DNA-binding proteins involved in the regulation of expression of a 22 kDa zein-like alpha-coixin gene. A set of unidirectional deletions was generated in a 962 bp fragment of the alpha-coixin promoter that had been previously fused to the reporter gene GUS. The constructs were assayed by transient expression in immature maize endosperm. There was no significant decrease in GUS activity as deletions progressed from -1084 to -238. However, deletion from -238 to -158, which partially deleted the O2c box, resulted in a dramatic decrease in GUS activity emphasizing the importance of the O2 box in the quantitative expression of the gene. The -238 promoter fragment interacted with Coix endosperm nuclear proteins to form 5 DNA-protein complexes, C1-C5, as detected by EMSA. The same retarded complexes were observed when the -158 promoter fragment was used in the binding reactions. Reactions with nuclear extracts isolated from Coix endosperms harvested from 6 to 35 days after pollination revealed that the 5 DNA-protein complexes that interact with the alpha-coixin promoter are differentially assembled during seed development. Deletion analysis carried out on the -238/ATG promoter fragment showed that a 35 bp region from -86 to -51 is essential for the formation of the complexes observed. When nuclear extracts were incubated with an antiserum raised against the maize Opaque-2 protein, the formation of 4 complexes, C1, C3, C4 and C5, was prevented indicating that an Opaque-2 like protein participates in the formation of those complexes. Complex C2 was not affected by the addition of the O2 antibody, suggesting the existence of a novel nuclear factor, CBF1, that binds to the promoter and makes protein-protein associations with other proteins present in Coix endosperm nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.