Using multifrequency phase fluorometry, fluorescence lifetimes have been assigned to the different protolytic forms of the antibiotic virginiamycin S. These lifetimes are 0.476 +/- 0.005 ns for the uncharged form, 1.28 +/- 0.2 and 7.4 +/- 0.2 ns for the zwitterionic form, 1.19 +/- 0.01 ns for the negatively charged form, and 1.9 +/- 0.1 ns for the double negatively charged form. The assignments are based on lifetime measurements as a function of pH, volume percent ethanol, and excitation wavelength. Excited-state proton transfer is taken into account. It is complete at pH values lower than 1, and no fluorescence of the fully protonated charged form is observed. At pH 8, an excited-state pK* increase is calculated, but proton association is too slow to cause excited-state proton transfer. The addition of divalent cations, at pH 9.4, increases the lifetime of the negatively charged form to a value dependent upon the specific nature of the cation (7.58 +/- 0.06 ns for Mg2+, 6.54 +/- 0.02 ns for Ca2+, and 3.74 +/- 0.05 ns for Ba2+). Monovalent cations do not influence the lifetimes, indicating that their binding to the macrocycle does not influence the fluorescent moiety. The model compound 3-hydroxypicolinamide shows an analogous behavior, but the retrieved lifetime can differ significantly.
Virginiamycin S, a type B synergimycin inhibiting protein synthesis in bacteria, competes with erythromycin for binding to the 50S ribosomal subunits; the mechanism of action of the two antibiotics is unclear. Energy-transfer experiments between virginiamycin S (which is endowed with inherent fluorescence due to its hydroxypicolinyl moiety) and fluorescent coumarinyl derivatives of ribosomal proteins L7 and L10 have been carried out to locate the binding site of this antibiotic on the ribosome. Previous studies have indicated that two L7/L12 dimers can attach respectively to a strong binding site located on the central protuberance and to a weak binding site located on the stalk of the 50S subunits and that protein L10 is located at the base of the stalk. The distance between ribosome-bound virginiamycin S and a fluorophore located at the strong binding site of proteins L7/L12 (Lys-51 of L7) was found to be 56 (+/- 15) A. Virginiamycin S, on the other hand, was located at a distance exceeding 67 A from the weak binding site of L7/L12 dimers. A fluorophore positioned on the unique cysteine (Cys-70) of protein L10 and ribosome-bound virginiamycin S proved to be more than 60 A apart. From data available on the location of proteins L7/L12 and L10, a model is proposed, whereby the virginiamycin S binding site is placed at the base of the central protuberance of the 50S subunits, in proximity of the presumptive peptidyl transferase center. The binding sites of macrolides and lincosamides (related antibiotics of the MLS group) are expected to be very close to that of virginiamycin S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.