Microbiology, chemistry and dissolved gas in groundwater from Olkiluoto, Finland, were analysed over 3 years; samples came from 16 shallow observation tubes and boreholes from depths of 3.9-16.2 m and 14 deep boreholes from depths of 35-742 m. The average total number of cells (TNC) was 3.9 Â 10 5 cells per ml in the shallow groundwater and 5.7 Â 10 4 cells per ml in the deep groundwater. There was a significant correlation between the amount of biomass, analysed as ATP concentration, and TNC. ATP concentration also correlated with the stacked output of anaerobic most probable number cultivations of nitrate-, iron-, manganese-and sulphate-reducing bacteria, and acetogenic bacteria and methanogens. The numbers and biomass varied at most by approximately three orders of magnitude between boreholes, and TNC and ATP were positively related to the concentration of dissolved organic carbon. Two depth zones were found where the numbers, biomass and diversity of the microbial populations peaked. Shallow groundwater down to a depth of 16.2 m on average contained more biomass and cultivable microorganisms than did deep groundwater, except in a zone at a depth of approximately 300 m where the average biomass and number of cultivable microorganisms approached those of shallow groundwater. Starting at a depth of approximately 300 m, there were steep gradients of decreasing sulphate and increasing methane concentrations with depth; together with the peaks in biomass and sulphide concentration at this depth, these suggest that anaerobic methane oxidation may be a significant process at depth in Olkiluoto.
Site selection for a spent nuclear fuel (SNF) repository required analysis of microbial abundance and diversity at two Swedish sites, Forsmark and Laxemar-Simpevarp. Information about sulphate-reducing bacteria (SRB) was required, as sulphide could corrode copper SNF canisters. Total number of cells (TNC) and ATP were analysed, and plate counts and most probable number (MPN) analyses were conducted using eight media based on different electron donors and acceptors for specific microorganism physiological groups. Groundwater chemical composition and E(h) were analysed; sampling depths were 112-978 m below sea level. TNC was 5.5 × 10(3) to 4.7 × 10(5) cells mL(-1), correlating with ATP concentrations. Culturability in TNC percentage was 0.01-35.9, averaging 5.12. Culturable numbers varied greatly between sample positions and uncorrelated with depth. SRB were found in 29 samples and were below detection in three; the MPN of SRB correlated negatively with E(h), as did the MPN of acetogens. Data indicated that microbial sulphate reduction was ongoing in many sampled aquifers; published stable isotope data and modelling results supported this observation. The sites did not differ significantly, but the large data range suggested that analysis of more samples would enable detailed evaluation of microbial processes and their relationship with geochemical information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.