A flip-flow screen with crankshaft-link structure (FFSCLS) is an effective solution for screening of high-water and fine materials due to its good performance. The dynamical characteristics largely affects the screen performance and the processing capacity of the FFSCLS. In this paper, a dynamic model governing the dynamical characteristics of the FFSCLS was proposed. In addition, the motion trajectory and vibration data of the FFSCLS were investigated by vibration experimental technology. The results show that the experiment results can be fully described by the dynamic model whit the maximum deviation was within 6.26 %. Moreover, the mass ratio between outer box and inner box determined the dynamical characteristics of the flip-flow screen, and these parameters should be optimized. This work can provide useful references for efficient operation and optimal design for the flip-flow screen.
Flip-flow screens are increasingly used in the processing of fine wet coal. In this work, the vibration characteristics of an industrial-scale flip-flow screen with crank-link structure (FFSCLS) were investigated theoretically and experimentally. An improved kinematic model of FFSCLS was proposed and experiments are carried out to verify the reasonability. The effects of the key parameters of the eccentricity of the crankshaft, the rotational speed of the crankshaft, and the tension length of the screen surface on the vibration characteristics of the screen were investigated parametrically. The results show that the kinematic model can describe the vibration characteristics of screen perfectly with the maximum error between the theoretical and experimental results being within 6.96%. Moreover, the key parameters of the eccentricity of the crankshaft, the rotational speed of the crankshaft, and the tension length of the screen surface have significant effects on the vibrations of the screen body and screen surface. These parameters should be optimized to achieve maximum screening performance of the FFSCLS. This work should be useful for optimal design and efficient operation of the flip-flow screen.
a new method of locating the pinch is presented for the design of heat exchanger networks. The method is based on the pinch design method for heat exchanger networks which was first introduced by Linnhoff. The method first consider both the heat loss of a hot stream and the heat capacity flowrate of a stream with variation in temperature in the design of heat exchanger networks. Which affect not only minimum utility requirement for heat exchanger network but also the pinch location, choice ofΔTmin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.