Linear ubiquitination is a critical regulator of inflammatory signaling pathways. However, linearly ubiquitinated substrates and the biological significance of linear ubiquitination is incompletely understood. Here, we show that STAT1 has linear ubiquitination at Lys511 and Lys652 residues in intact cells, which inhibits STAT1 binding to the type-I interferon receptor IFNAR2, thereby restricting STAT1 activation and resulting in type-I interferon signaling homeostasis. Linear ubiquitination of STAT1 is removed rapidly by OTULIN upon type-I interferon stimulation, which facilitates activation of interferon-STAT1 signaling. Furthermore, viruses induce HOIP expression through the NF-κB pathway, which in turn increases linear ubiquitination of STAT1 and thereby inhibits interferon antiviral response. Consequently, HOIL-1L heterozygous mice have active STAT1 signaling and enhanced responses to type-I interferons. These findings demonstrate a linear ubiquitination-mediated switch between homeostasis and activation of type-I interferon signaling, and suggest potential strategies for clinical antiviral therapy.
Highlights d Viperin protein induction in epithelium is defective in response to viruses or IFNs d Viruses and IFNs utilize HAT1 to induce Viperin acetylation that recruits UBE4A d UBE4A induces Viperin K6 ubiquitination and degrades Viperin protein in epithelium d VIP-IP3 rescues Viperin protein in epithelium and enhances host antiviral defense
CREB-binding protein (CBP) participates in numerous transcription events. However, cellintrinsic inhibitors of CBP are poorly defined. Here, we found that cellular USP12 interacts with the HAT domain of CBP and inhibits CBP's acetyltransferase activity. Interestingly, USP12 positively regulates interferon (IFN) antiviral signaling independently of its deubiquitinase activity. Furthermore, we found that in IFN signaling USP12 translocates from the cytoplasm to the nucleus. The decrease in cytoplasmic USP12 facilitates CBP-induced acetylation and activation of IFN signaling proteins in the cytoplasm. Moreover, USP12 accumulation in the nucleus blocks CBP-induced acetylation of phosphorylated STAT1 (p-STAT1) and therefore inhibits the dephosphorylation effects of TCPTP on p-STAT1, which finally maintains nuclear p-STAT1 levels and IFN antiviral efficacy. USP12 nuclear translocation extends our understanding of the regulation of the strength of IFN antiviral signaling. Our study uncovers a cell-intrinsic regulation of CBP acetyltransferase activity and may provide potential strategies for IFN-based antiviral therapy.
Summary
Interferon regulatory factor 3 (IRF3) is a critical transcription factor for inducing production of type I interferons (IFN‐I) and regulating host antiviral response. Although IRF3 activation during viral infection has been extensively studied, the inhibitory regulation of IRF3 remains largely unexplored. Here, we revealed that Midline‐1 (MID1) is a ubiquitin E3 ligase of IRF3 that plays essential roles in regulating the production of IFN‐I. We found that MID1 physically interacts with IRF3 and downregulates IRF3 protein levels. Next, we demonstrated that MID1 can induce K48‐linked polyubiquitination of IRF3, thus lowing the protein stability of IRF3. Our further studies identified Lys313 as a major ubiquitin acceptor lysine of IRF3 induced by MID1. Finally, MID1‐mediated ubiquitination and degradation of IRF3 restrict IFN‐I production and cellular antiviral response. This study uncovers a role of MID1 in regulating innate antiviral immunity and may provide a potential target for enhancing host antiviral activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.