Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients.
The tumor adaptive resistance to therapeutic radiation remains to be a barrier for further improvement of local cancer control. SIRT3, a member of the sirtuin family of NAD+-dependent protein deacetylases in mitochondria, promotes metabolic homeostasis through regulation of mitochondrial protein deacetylation and plays a key role in prevention of cell aging. Here, we demonstrate that SIRT3 expression is induced in an array of radiation-treated human tumor cells and their corresponding xenograft tumors including colon cancer HCT-116, glioblastoma U87 and breast cancer MDA-MB231 cells. The SIRT3 transcriptional activation is due to SIRT3 promoter activation controlled by the stress transcription factor NF-κB. Post-transcriptionally, the SIRT3 enzymatic activity is further enhanced via Thr150/Ser159 phosphorylation by Cyclin B1/CDK1, which is also induced by radiation and relocated to mitochondria together with SIRT3. Cells expressing the Thr150Ala/Ser159Ala mutant SIRT3 show a reduction in the mitochondrial protein lysine deacetylation, ΔΨm, MnSOD activity and mitochondrial ATP generation. The clonogenicity of Thr150Ala/Ser159Ala mutant transfectants is lower and significantly decreased under radiation. Tumors harboring the Thr150Ala/Ser159Ala mutant SIRT3 show inhibited growth and sensitivity to in vivo local irradiation. These results demonstrate that enhanced SIRT3 transcription and post-translational modifications in mitochondria contribute to the adaptive radioresistance in tumor cells. The CDK1-mediated SIRT3 phosphorylation is a potential effective target to sensitize tumor cells to radiotherapy.
Emerging pathogenic viruses such as Ebola and Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV) can cause acute infections through the evasion of the host's antiviral immune responses and by inducing the upregulation of inflammatory cytokines. This immune dysregulation, termed a cytokine storm or hypercytokinemia, is potentially fatal and is a significant underlying factor in increased mortality of infected patients. The prevalence of global outbreaks in recent years has offered opportunities to study the progression of various viral infections and have provided an improved understanding of hypercytokinemia associated with these diseases. However, despite this increased knowledge and the study of the infections caused by a range of emerging viruses, the therapeutic options still remain limited. This review aims to explore alternative experimental strategies for treating hypercytokinemia induced by the Ebola, avian influenza and Dengue viruses; outlining their modes of action, summarizing their preclinical assessments and potential clinical applications.
Although the efficacy of cancer radiotherapy (RT) can be enhanced by targeted immunotherapy, the immunosuppressive factors induced by radiation on tumor cells remain to be identified. Here, we report that CD47-mediated anti-phagocytosis is concurrently upregulated with HER2 in radioresistant breast cancer (BC) cells and RT-treated mouse syngeneic BC. Co-expression of both receptors is more frequently detected in recurrent BC patients with poor prognosis. CD47 is upregulated preferentially in HER2-expressing cells, and blocking CD47 or HER2 reduces both receptors with diminished clonogenicity and augmented phagocytosis. CRISPR-mediated CD47 and HER2 dual knockouts not only inhibit clonogenicity but also enhance macrophage-mediated attack. Dual antibody of both receptors synergizes with RT in control of syngeneic mouse breast tumor. These results provide the evidence that aggressive behavior of radioresistant BC is caused by CD47-mediated anti-phagocytosis conjugated with HER2-prompted proliferation. Dual blockade of CD47 and HER2 is suggested to eliminate resistant cancer cells in BC radiotherapy.
Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to
The structural motif formed between a hammerhead ribozyme and its substrate consists of three RNA double helices in which the sequence 5' to the XUY is termed helix I and the sequence 3' to the XUY helix III. Two hammerhead ribozymes targeted to the tat gene of HIV-1SF2 were designed to study target specificity and the potential effect of helix I mismatch on ribozyme efficacy both in vitro and in vivo. The first ribozyme (Rz1) targeted to the 5' splicing region of the tat gene was designed to cleave GUC*A. In HIV-1IIIB the A is changed to a G. The second ribozyme (Rz2) was targeted to the translational initiation region of the tat gene which is highly conserved among a variety of HIV-1 isolates, including both HIV-1SF2 and HIV-1IIIB. In vitro cleavage studies demonstrated that Rz1 efficiency cleaved HIV-1SF2 substrate RNA, but not HIV-1IIIB, presumably due to the base change from A to G. In contrast, Rz2 cleaved HIV-1SF2 or HIV-1IIIB substrate with equal efficiency. Both ribozymes were cloned into the 3' untranslated region of the neomycin gene (neo) within the pSV2neo vector and transfected into the SupT1 human CD4+ T cell line. Following selection, stable transfectants were challenged with either HIV-1SF2 or HIV-1IIIB virus. While Rz1-expressing cells were significantly protected from HIV-1SF2 infection, they exhibited no protection when infected with HIV-1IIIB virus. In contrast, Rz2 was effective in inhibiting the replication of both HIV-1SF2 and HIV-1IIIB in SupT1 cells. Expression of both ribozymes in these cells was demonstrated by Northern analysis. RT-PCR sequencing analysis confirmed the respective HIV-1 target sequence integrity. These data demonstrate the importance of the first base pair distal to the XUY within helix I of the hammerhead structure for both in vitro and in vivo ribozyme activities and imply that the effectiveness of the anti-HIV-1 ribozymes against appropriate target sequences is due to their catalytic activities rather than any antisense effect.
Mesenchymal stem cells (MSCs) and fibroblasts are two major seed cells for ligament tissue engineering. To understand the effects of mechanical stimulation on these cells and to develop effective approaches for cell therapy, it is necessary to investigate the biological effects of various mechanical loading conditions on cells. In this study, fibroblasts and MSCs were tested and compared under a novel Uniflex/Bioflex culture system that might mimic mechanical strain in ligament tissue. The cells were uniaxially or radially stretched with different strains (5%, 10%, and 15%) at 0.1, 0.5, and 1.0 Hz. The cell proliferation and collagen production were compared to find the optimal parameters. The results indicated that uniaxial stretch (15% at 0.5 Hz; 10% at 1.0 Hz) showed positive effects on fibroblast. The uniaxial strains (5%, 10%, and 15%) at 0.5 Hz and 10% strain at 1.0 Hz were favorable for MSCs. Radial strain did not have significant effect on fibroblast. On the contrary, the radial strains (5%, 10%, and 15%) at 0.1 Hz had positive effects on MSCs. This study suggested that fibroblasts and MSCs had their own appropriate mechanical stimulatory parameters. These specific parameters potentially provide fundamental knowledge for future cell-based ligament regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.