Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone.
Osteoporosis is a leading public health problem that is responsible for substantial morbidity and mortality. A major determinant of the risk for osteoporosis in later life is bone mineral density (BMD) attained during early adulthood. BMD is a complex trait that presumably is influenced by multiple genes. Recent linkage of three Mendelian BMD-related phenotypes, autosomal dominant high bone mass, autosomal recessive osteoporosispseudoglioma, and autosomal recessive osteopetrosis to chromosome 11q12-13 led us to evaluate this region to determine if the underlying gene(s) could also contribute to variation in BMD in the normal population. We performed a linkage study in a sample of 835 premenopausal Caucasian and African-American sisters to identify genes underlying BMD variation. A maximum multipoint LOD score of 3.50 with femoral neck BMD was obtained near the marker D11S987, in the same chromosomal region as the three Mendelian traits mentioned above. Our results suggest that the gene(s) underlying these Mendelian phenotypes also play a role in determining peak BMD in the normal population and are the first using linkage methods to establish a chromosomal location for a gene important in determining peak BMD. These findings support the hypothesis that a gene responsible for one or more of the rare Mendelian BMD traits linked to chromosome 11q12-13 has an important role in osteoporosis in the general population. (J Bone Miner Res 1998;13: [1903][1904][1905][1906][1907][1908]
Quantitative trait loci (QTL) mapping of complex phenotypes has emerged as an important feature of the recombinant inbred (RI) strain methodology. In this second study of our series on alcohol-related behaviors in mice, we examine alcohol acceptance, preference, and hypnotic dose sensitivity (HDS) to a standard dose of alcohol measured in BXD RI strains to identify candidate QTL regions responsible for their heritability. We detected highly significant marker associations for acceptance on chromosome 12 (Eif4e), for preference on chromosome 1 (D1Rti2) and chromosome 7 (D7Mit7), and for HDS on chromosome 7 (Mpmv1). These are the strongest QTL associations that we detected, but several other candidate QTL regions are reported. Given the limited number of BXD RI strains available, the large number of markers used herein, and the consequent chance of identifying false marker associations, these RI QTL mapping results must be seen as tentative, but an important first step toward identifying QTL for alcohol-related behaviors.
Femoral structure contributes to bone strength at the proximal femur and predicts hip fracture risk independently of bone mass. Quantitative components of femoral structure are highly heritable traits. To identify genetic loci underlying variation in these structural phenotypes, we conducted an autosomal genome screen in 309 white sister pairs. Seven structural variables were measured from femoral radiographs and used in multipoint sib-pair linkage analyses. Three chromosomal regions were identified with significant evidence of linkage (log 10 of the odds ratio [LOD] > 3.6) to at least one femoral structure phenotype. The maximum LOD score of 4.3 was obtained for femur neck axis length on chromosome 5q. Evidence of linkage to chromosome 4q was found with both femur neck axis length (LOD ؍ 3.9) and midfemur width (LOD ؍ 3.5). Significant evidence of linkage also was found to chromosome 17q, with a LOD score of 3.6 for femur head width. Two additional chromosomal regions 3q and 19p gave suggestive (LOD > 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.