The flavanol epigallocatechin gallate (EGCG) is being tested for the treatment of several diseases in humans. However, its bioavailability and pharmacokinetic profile needs a better understanding to enable its use in clinical trials. There is no consensus on the most appropriate concentration of EGCG in the body to obtain the maximum therapeutic effects. Therefore, the aim of this study is to analyze the bioavailability of EGCG orally administered alone or with different food supplements after overnight fasting in order to determine its optimal conditions (high concentrations in blood and the lowest interindividual variations) to be used as a pharmacological tool in human trials. Ten healthy volunteers (5 men and 5 women) aged 25 to 35 years were recruited prospectively. Three series of clinical experiments with a washout period of seven days among each were performed: (1) Teavigo® (EGCG extract) alone, (2) Teavigo® with a standard breakfast, and (3) FontUp® (Teavigo® commercially prepared with fats, carbohydrates, proteins, vitamins, and minerals). Blood samples were collected at 0, 30, 60, 90, 120, 180, 240, and 360 min after EGCG intake. Free EGCG in plasma was measured using a liquid chromatography and mass spectrometry UPLC-ESI-MS/MS analytical method. The pharmacokinetic variables analyzed statistically were area under the curve (AUC0–360), Cmax, Cav, Cmin, T1/2, and Tmax. EGCG (Teavigo®) alone was the group with higher AUC0–360, Cmax, and Cav both in men (3.86 ± 4.11 µg/mL/kg/6 h; 5.95 ng/mL/kg; 2.96 ng/mL/kg) and women (3.33 ± 1.08 µg/mL/kg/6 h; 6.66 ng/mL/kg; 3.66 ng/mL). Moreover, FontUp® was the group with the highest value of T1/2 both in men (192 ± 66 min) and women (133 ± 28 min). Teavigo® intake after fasting overnight revealed the highest concentration of EGCG in plasma according to its pharmacokinetic profile, indicating that this is an excellent alternative of administration if the experimental design requires good absorption in the gastrointestinal tract. Moreover, EGCG taken along with food supplements (FontUp®) improved the stability of the molecule in the body, being the best choice if the experimental design wants to reduce interindividual variation.
The perinatal period is crucial to the establishment of lifelong gut microbiota. The abundance and composition of microbiota can be altered by several factors such as preterm delivery, formula feeding, infections, antibiotic treatment, and lifestyle during pregnancy. Gut dysbiosis affects the development of innate and adaptive immune responses and resistance to pathogens, promoting atopic diseases, food sensitization, and infections such as necrotizing enterocolitis (NEC). Recent studies have indicated that the gut microbiota imbalance can be restored after a single or multi-strain probiotic supplementation, especially mixtures of Lactobacillus and Bifidobacterium strains. Following the systematic search methodology, the current review addresses the importance of probiotics as a preventive or therapeutic tool for dysbiosis produced during the perinatal and infant period. We also discuss the safety of the use of probiotics in pregnant women, preterm neonates, or infants for the treatment of atopic diseases and infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.