Atherosclerosis is a multifactorial result of complicated pathophysiology. Changes in the expression of polygenes, coupled with environmental and lifestyle factors, trigger a cascade of adverse events involving a variety of cell types, such as vascular endothelial cells, smooth muscle cells, and macrophages. In this review, we summarize the function and therapeutic targets of atherosclerotic cells. This article reviews the role of endothelial cells, smooth muscle cells, macrophages and foam cells in the development of atherosclerosis and the progress in the treatment of atherosclerosis by targeting these cells. Atherosclerotic plaque involves a variety of cells and biomolecules, and its complex biological environment is a difficult point for the study and treatment of atherosclerosis. For treating atherosclerosis, a large number of studies emerged based on blocking or inhibiting factors affecting the formation and development of plaque. Cardiovascular stent intervention is currently the main method for the treatment of atherosclerosis. In recent decades, numerous studies on cardiovascular, stents mainly involve drug coating or biomolecular modification of stents to enhance anti-thrombosis, anti-restenosis and endothelialization. This paper introduces the research status of cardiovascular stents and new strategies for surface modification. The treatment of atherosclerosis based on the level of molecular biology and cell biology is becoming a research hotspot in the coming decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.