The ultrastructure of the oral (buccopharyngeal) membrane was examined by transmission and electron microscopy in the anuran, Rana japonica, embryo. The stomodeum is recognizable on the ventral surface anterior to the neural folds as the neural folds are beginning to close (neural tube stage). The stomodeum is gradually enlarged and deepened as development proceeds. At the neural tube stage, the oral membrane is 5-7 cell layers thick and the stomodeal ectodermal cells are cuboidal and the foregut endodermal cells are cuboidal or columnar. Desmosomes and basal lamina could not be found between the ectodermal and endodermal epithelia. The oral membrane gradually thins between the neural tube and hatching stages. At the hatching stage, the oral membrane becomes two or three cell layers thick and each cell is flattened. Many perforations of the oral membrane after hatching and the oral membrane appears "net-like." Necrotic cells occur in the oral membrane and these cells contain many autophagic vacuoles. ACPase-positive lysosomes, Golgi regions, and autophagic vacuoles were present in the oral membrane. At the asymmetrical trunk stage, a large part of the oral membrane disappears and only remnants are left.
Autolysis and heterolysis of the degenerating epidermis of the tail fin of Rana japonica tadpoles during spontaneous metamorphosis were observed by transmission and scanning electron microscopy. In the early climactic stages of metamorphosis (st. 19-20), the outermost epidermal cells developed vacuoles that were acid phosphatase positive and showed apparent breakdown of the cell membrane. The cells shrunk, perhaps due to the rupture of the cell membrane, and sloughed off without typical cornification. As tail resorption proceeded, autolysis of the epidermal cells spread towards the inner layers, in which some epidermal cells lost desmosomal junctions. They also displayed atrophic figures with condensed cytoplasm, breakdown of the cell membrane, and pycnotic nuclei. Lymphocytes, neutrophils and macrophages were already present in the basal layers of the premetamorphic epidermis (st. 10). Based on ultrastructural observation, blood cells could be distinguished from autolysing epidermal cells. Only a few blood cells were found in the early climactic stages of metamorphosis (st. 19-20), but the number of the blood cells, especially macrophages, greatly increased during the final stages of metamorphosis (st. 23-24). During the final stages, many macrophages were observed to phagocytose the autolysing epidermal cells by projecting slender pseudopodia into the inner epidermis. Macrophages also were observed to pass through the degraded basal lamella. These results suggest that not only autophagy but also heterophagy of the epidermal cells by the macrophages is a major process in the regression of the tail fin epidermis.
The ultrastructure of the oral (buccopharyngeal) membrane in the embryo of the urodelan, Hynobius tokyoensis, was examined by transmission (TEM) and scanning electron microscopy (SEM). The oral membrane consists of the stomodeal ectoderm and foregut endoderm, and is three to five cell layers thick at stage 24. The oral membrane gradually thickens as development proceeds. The stomodeal collar, derived from the ectoderm, is folded inward along the foregut endoderm. Tooth germs are formed partly by cells of the stomodeal collar and partly by mesenchymal cells and calcification takes place before hatching. Secretory granules, which are markers of epithelial differentiation, appear in some cells of the foregut endoderm. Within the oral membrane, the cells of the stomodeal collar become the basal cells, and the endodermal cells of the foregut become the apical cells of the future oral epithelium. Gaps are formed by the epithelial differentiation of the endodermal cells of the foregut in the oral membrane. The gaps connect with each other, with the stomodeum, and with the foregut. As a result of these events, the mouth opens at stage 43, just after hatching.
Skins from back and tail were dissected from tadpoles of Rana japonica prior to resorption of the tail and separated into epidermis and dermis by treatment with neutral protease. Homotypically and heterotypically recombined skins were constructed from the separated epidermis and dermis and transplanted into the tail of the original tadpole. Skin grafts using dermis from tail region degenerated simultaneously with resorption of the tail. However, skin grafts containing dermis from back region survived on the posterior part of the juvenile frog beyond metamorphosis. Furthermore, all epidermis underlaid with dermis from back region formed secretory glands and became flattened epithelia characteristic of adult back skin, regardless of region from which the epidermis came. Even when epidermis isolated from tail skin was cultured inside a back skin graft, the tail epidermis survived forming an epithelial cyst and developed secretory glands. These results suggest that regional specificities of anuran larval skin, i.e., development of back skin and even histolysis of tail skin, are determined by regionally specific dermis. The results also suggest that some of epidermal cells of tail skin are able to differentiate into epithelial cells similar to back skin of the adult under the influence of back dermis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.