Influenza epidemics and pandemics are constant threats to global public health. Although strategies including vaccines and antiviral drugs have achieved great advances in controlling influenza virus infection, the efficacy of these strategies is limited by the highly frequent mutations in the viral genome and the emergence of drug-resistant strains. Our previous study indicated that boosting the immunity of human Vγ9Vδ2-T cells with the phosphoantigen pamidronate could be a therapeutic strategy to treat seasonal and avian influenza virus infections. However, one notable drawback of γδ-T cell-based immunotherapy is the rapid exhaustion of proliferation and effector responses due to repeated treatments with phosphoantigens. Here, we found that the expression of CD137 was inducible in Vγ9Vδ2-T cells following antigenic stimulation. CD137 + Vγ9Vδ2-T cells displayed more potent antiviral activity against influenza virus than their CD137 − counterparts in vitro and in Rag2-/γc-/mice. We further demonstrated that CD137 costimulation was essential for Vγ9Vδ2-T cell activation, proliferation, survival and effector functions. In humanized mice reconstituted with human peripheral blood mononuclear cells, CD137 costimulation with a recombinant human CD137L protein boosted the therapeutic effects of pamidronate against influenza virus. Our study provides a novel strategy of targeting CD137 to improve the efficacy of Vγ9Vδ2-T cell-based immunotherapy.
Human Vγ9Vδ2-T cells recognize nonpeptidic antigens and exert effector functions against microorganisms and tumors, but little is known about their roles in humoral immune response against influenza virus infection. Herein, in the coculture of autologous human B cells, dendritic cells and/or naïve CD4 T cells, and Vγ9Vδ2-T cells, we demonstrated that Vγ9Vδ2-T cells could facilitate H9N2 influenza virus-specific IgG and IgM productions in a CD4 T cell-dependent manner. Vγ9Vδ2-T cells promoted the differentiation of CXCR5+PD1+CD4+ T follicular helper (Tfh) cells, CD19+IgD−CD38++ plasma cells (PCs), and drove B cell proliferation as well as immunoglobulin class switching. Interestingly, Vγ9Vδ2-T cells acquired Tfh-associated molecules such as CXCR5, PD1, CD40L, and ICOS during influenza virus stimulation, especially in the presence of CD4 T cells. Moreover, Vγ9Vδ2-T cells promoted CD4 T cells to secrete IL-13 and IL-21, and neutralizing IL-13 and IL-21 significantly reduced the number of CD19+IgD−CD38++ PCs. Using humanized mice, we further demonstrated that Vγ9Vδ2-T cells could synergize CD4 T cells to produce influenza virus-specific antibody. Our findings provide a greater scope for Vγ9Vδ2-T cells in adaptive immunity, especially for the Tfh development and humoral immune responses against influenza virus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.