This study statistically investigates the characteristics of tropical cyclones (TCs) undergoing rapid intensification (RI) in the western North Pacific in the 37 years from 1979 to 2015 and the relevant atmospheric and oceanic environments. Among 900 TCs, 201 TCs undergoing RI (RI-TCs) are detected by our definition as a wind speed increase of 30 kt (15.4 m s−1) or more in a 24-h period. RI-TCs potentially occur throughout the year, with low variation in RI-TC occurrence rate among the seasons. Conversely, the annual occurrence of RI-TC varies widely. In El Niño years, TCs tend to undergo RI mainly as a result of average locations at the time of tropical storm formation (TSF) being farther east and south, whereas TCs experience RI less frequently in La Niña years. The occurrence rates of RI-TC increased from the 1990s to the late 2000s. The RI onset time is typically 0–66 h after the TSF and the duration that satisfies the criteria of RI is 1–2 days. RI frequently occurs over the zonally elongated area around the eastern Philippine Sea. The development stage and life-span are longer in RI-TCs than in TCs that do not undergo RI. RI-TCs are small at the time of TSF and tend to develop as intense TCs as a result of environmental conditions favorable for TC development, weak vertical wind shear, high convective available potential energy, and tropical cyclone heat potential. The occurrence rates of RI-TCs that make landfall in Japan and the Philippines are higher than in China and Vietnam.
The inner core of Tropical Cyclone Lan was observed on 21− 22 October 2017 by GPS dropsondes during the first aircraft missions of the Tropical Cyclones-Pacific Asian Research Campaign for the Improvement of Intensity Estimations/Forecasts (T-PARCII). To evaluate the impact of dropsondes on forecast skill, 12 36-h forecasts were conducted using a Japan Meteorological Agency non-hydrostatic model (JMA-NHM) with a JMA-NHM-based mesoscale four-dimensional data assimilation (DA) system. Track forecast skill improved over all forecast times with the assimilation of the dropsonde data. The improvement rate was 8−16% for 27−36-h forecasts. Minimum sea level pressure (Pmin) forecasts were generally degenerated (improved) for relatively short-term (long-term) forecasts by adding the dropsonde data, and maximum wind speed (Vmax) forecasts were degenerated. Some of the changes in the track and Vmax forecasts were statistically significant at the 95% confidence level. It is notable that the dropsonde-derived estimate of Pmin was closer to the realtime analysis by the Regional Specialized Meteorological Center (RSMC) Tokyo than the RSMC Tokyo best track analysis. The degeneration in intensity forecast skill due to uncertainties in the best track data is discussed.
This study examines the diurnal variation of the convective area and eye size of thirty rapidly intensifying tropical cyclones (RI TCs) that occurred in the western North Pacific from 2015 to 2017 utilizing Himawari-8 satellite imagery. The convective area can be divided into the active convective area (ACA), mixed-phase, and inactive convective area (IACA) based on specific thresholds of brightness temperature. In general, ACA tends to develop vigorously from late afternoon to early next morning, while mixed-phase and IACA develop during the day. This diurnal pattern indicates the potential for ACA to evolve into mixed-phase or IACA over time. From the thirty samples, RI TCs tend to have at least a single-completed diurnal signal of ACA inside the radius of maximum wind (RMW) during the rapidly intensifying period. In the same period, the RMW also contracts significantly. Meanwhile, more intense storms such as those of category 4 or 5 hurricane intensity are apt to have continuous ACA inside the RMW and maintain eyewall convective clouds. These diurnal patterns of the ACA could vary depending on the impact of large-scale environments such as vertical wind shear, ocean heat content, environmental mesoscale convection, and terrain. The linear regression analysis shows that from the tropical storm stage, RI commences after a slow intensification period, which enhances both the primary circulation and eyewall convective cloud. Finally, after the eye structure appears in satellite imagery, its size changes inversely to the diurnal variation of the convective activity, e.g., the eye size becomes larger during the daytime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.