Urinary protein biomarkers and metabolomic markers have been leveraged to detect acute Drug Induced Kidney Injury (DIKI) in rats; however, the utility of these indicators to enable early detection of DIKI in canine models has not been well documented. Therefore, we evaluated temporal changes in biomarkers and metabolites in urine from male and female beagle dogs. Gentamicin- induced kidney lesions in male dogs were characterized by moderate to severe tubular epithelial cell degeneration/necrosis, epithelial cell regeneration and dilation; and a unique urinebased metabolomic fingerprint. These metabolite changes included time and treatment-dependent increases in lactate, taurine, glucose, lactate, alanine, and citrate as well as 9 other known metabolites. As early as 3 days post dose, gentamicin induced increases in urinary albumin, clusterin, neutrophil gelatinase associated protein (NGAL) and total protein concentrations. Urinary albumin, clusterin, and NGAL showed earlier and more robust elevations than traditional kidney safety biomarkers, blood urea nitrogen and serum creatinine. Elevations in urinary kidney injury molecule 1 (KIM-1) were less reliable for detection of gentamicin nephrotoxicity in dogs based on values generated utilizing multiple first-generation, canine-specific KIM-1 immunoassays. The metabolic fingerprint was further evaluated in male and female dogs that received Compound A which induced slightly reversible renal tubular alterations characterized as degeneration/necrosis and concurrent significant increases in urinary taurine amongst other markers. These data support further investigations to demonstrate the value of urinary metabolites, albumin, clusterin, NGAL and taurine as promising markers to enable early detection of DIKI in dogs.
Fenoldopam (SK&F 82526) is a potent and selective dopamine DA-1 agonist with demonstrated renal vasodilator and antihypertensive activities in experimental animals and humans. Fenoldopam is a racemic mixture of two enantiomers, SK&F R-82526 and SK&F S-82526. The R-enantiomer is uniformly reported to be more potent than the racemate; in contrast, there is controversy regarding potency of the S-enantiomer. In these studies, the renal and systemic hemodynamic activities of fenoldopam and its enantiomers are characterized in anesthetized, phenoxybenzamine-treated dogs. The results show that the renal and systemic vasodilator activities of fenoldopam are properties of the R-enantiomer; the S-enantiomer is essentially inactive. The renal and systemic vasodilator properties of SK&F R-82526 are antagonized in a competitive fashion by the DA-1 antagonist, SK&F R-83566, but not the DA-2 antagonist, domperidone. Ganglionic blockade did not attenuate renal vasodilation associated with SK&F R-82526. Thus, the mechanism of SK&F R-82526-associated vasodilation, like that previously established for fenoldopam, is via stimulation of postganglionic DA-1 receptors.
[1-(beta,beta-Pentamethylene-beta-mercaptopropionic acid),2-(O-ethyl)-D- tyrosine,4-valine,9-desglycine]arginine-vasopressin (SK&F 101926, 1), a potent in vivo and in vitro vasopressin V2 receptor antagonist, was recently tested in human volunteers and shown to be a full antidiuretic agonist. A new animal model for vasopressin activity has been developed in dogs that duplicates the clinical agonist findings exhibited with SK&F 101926. In this model we have discovered that substitution of a cis-4'-methyl group on the Pmp moiety at residue 1 of vasopressin antagonists results in substantially reduced agonist activity compared to the unsubstituted molecule (SK&F 101926). The corresponding analogue with a trans-4'-methyl group exhibits more agonist activity than the cis molecule. These findings can be explained by viewing the biological activities of compounds such as 1 as the interaction of the vasopressin receptor with a number of discrete molecular entities, conformers of 1, which present different pharmacophores. Models have been developed to assist in the understanding of these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.