21) Mashimo, S.; Kuwabara, S.; Yagihara, S.; Higasi, K. J. Chem. Phys. (22) Agmon, N.; Huppert, D.; Masad, A.; Pines, E. J. Chem. Phys. 1991, (23) Conway, B. E.; Bockris, J. OM.; Linton, H. J. Chem. Phys. 1956, (24) Kolodney, E.; Huppert, D. Chem. Phys. 1981.63, 401. (25) See: "Spectrmcopy and Dynamics of the Elementary Proton Transfer (26) Brucker, G. A.; Swinney, T. C.; Kelley, D. F. J . Phys. Chem. 1991, (27) Barbara, P. F.; Walsh, P. K.; Brus, L. E. J. Phys. Chem. 1989, 93, (28) Flom, S. R.; Barbara, P. F. J. Phys. Chem. 1985, 89, 4489. (29) Konijnenberg, J.; Huizer, A. H.; C.A.G.O. Varma, J . Chem. Soc., (30) Cramer, H. Mathematical Meihods of Siatistics; Uppsala: Almquist 1989, 90, 3295. 95, 3190. 95, 10407. 29. 24, 834. in Polyatomic Systems". Chem. Phys. 1989, 136. Faraday Trans. 2 1989, 85. 1539 and references therein. and Wiksells, 1945. The gas-phase photobromination of CHClF, (1) in the presence of CHICl (2) as competitor has been studied in the temperature range 80-150 OC at halomethane pressures of -35 Torr and a Br2 pressure of -2.3 Torr. The temperature dependence of the rate constant ratio is found to obey the Arrhenius expression In ( k l / k z ) = (4.0885 f 0.0580) -(1 144 f 20)/T. This result is combined with an earlier relative study of CH3Cl (2) v8 C ! & (3) and a recent direct determination by kinetic s p a m m p y of the rate constant for the bromination of ethane (kJ to obtain absolute rate parameters for the reaction CHClF, + Br -CClF, + HBr. Using a justifiable approximation concerning the magnitude of the activation energy difference for the reverse reactions between any two competitors of similar complexity, and other thermochemical data from the literature, the following quantities have been derived: AH~0298(CC1F2) = -66.7 f 2 kcal mol-I and Do(CClF2-H) = 100.7 f 2 kcal mol-' where the uncertainties are conservative estimates. On the basis of the new value of k3, activation energies for the bromination of CH4 and other halomethanes are reported.