This study investigated the ameliorative effects of beta-carotene (BC) on diabetes-associated vascular dementia and its action against biomolecule oxidation. The diabetic vascular dementia (VaD) was induced by administration of nicotinamide (NA; 50 mg/kg; i.p.) and streptozotocin (STZ; 50 mg/kg; i.p.). The test compound, BC (50 and 100 mg/kg; p.o.), and the reference compound, donepezil (DP) (1 mg/kg; p.o.), were administered for 15 consecutive days. Changes in learning and memory were assessed by escape latency time (ELT) and times spent in target quadrant (TSTQ) in the Morris water maze (MWM) test. The changes in neurotransmitter, i.e., acetylcholinesterase (AChE) and oxidative stress markers, i.e., thiobarbituric acid reactive substance (TBARS) and reduced glutathione (GSH), were estimated in hippocampal tissue of the rat brain. The administration of STZ caused significant deterioration of cognitive function (decreased ELT and raised the TSTQ) as compared to the normal group. Treatment with BC and DP diminished the increased AChE activity, TBARS level and decreased GSH level caused by STZ. Thus, BC ameliorates the diabetic vascular complications in VaD due to its potential anticholinergic, antioxidative and free radical scavenging actions.
Beta carotene is a natural anti-oxidant agent, and it inhibits the matrix metalloprotease (MMP) activity. Diabetic neuropathic pain (DNP) is produced by cellular oxidative stress. The role of the beta carotene effect in diabetic neuropathic pain is not explored yet. The present study is designed for the evaluation of the palm oil mill effluent-derived beta carotene (PBC) effect in DNP in zebrafish. The DNP was induced by the intraperitoneal administration of streptozotocin (STZ). Blood glucose levels of above 15 mM were considered to be diabetic conditions. The zebrafish were exposed to test compound PBC (25, 50, and 100 µM), pregabalin (PG: 10 μM), and an MMP-13 inhibitor (CL-82198; 10 μM) for 10 consecutive days from day 11. The neuralgic behavioral parameters, i.e., temperature test, acetic acid test, and fin clip test were assessed on day 0 and the 7th, 14th, and 21st days. On the 22nd day, the blood glucose and MMP-13 levels and brain thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and MMP-13 activity levels were estimated. The treatment of PBC ameliorated the DNP-associated behavioral and biochemical changes. The results are similar to those of PG and CL-82198 treatments. Hence, the PBC possesses a potentially ameliorative effect against DNP due to its potential anti-oxidant, anti-lipid peroxidation, and MMP-13 inhibitory actions.
Molecular docking is widely used in the assessment of the therapeutic potential of pharmaceutical agents. The binding properties of beta-carotene (BC) to acetylcholine esterase (AChE) proteins were characterized using the molecular docking method. The mechanism of AChE inhibition was assessed by an experimental in vitro kinetic study. In addition, the role of BC action was tested by the zebrafish embryo toxicity test (ZFET). The results of the docking ability of BC to AChE showed significant ligand binding mode. The kinetic parameter, i.e., the low AICc value shown as the compound was the competitive type of inhibition of AChE. Further, BC also showed mild toxicity at a higher dose (2200 mg/L) in ZFET assessment with changes in biomarkers. The LC50 value of BC is 1811.94 mg/L. Acetylcholine esterase (AChE) plays a pivotal role in the hydrolysis of acetylcholine, which leads to the development of cognitive dysfunction. BC possesses the regulation of acetylcholine esterase (AChE) and acid phosphatase (AP) activity to prevent neurovascular dysfunction. Therefore, the characterization of BC could be used as a pharmaceutical agent for the treatment of cholinergic neurotoxicity-associated neurovascular disorders such as developmental toxicity, vascular dementia, and Alzheimer’s disease due to its AChE and AP inhibitory actions.
Beta-carotene (BC) is a precursor of vitamin A and an excellent antioxidant. It protects the vascular system. Vascular dementia (VaD) is one of the aging disorders causing memory dysfunction. The available medicines for the management of VaD are limited. The present study aimed to evaluate the ameliorative effect of BC in streptozotocin (STZ)-induced diabetic VaD in rats. Diabetic VaD was induced through the administration of nicotinamide (NA, 50 mg/kg; i.p.) and STZ (50 mg/kg; i.p.). The test compound BC (50 and 100 mg/kg; p.o.) and reference compound donepezil (1 mg/kg; p.o.) were administered for 15 consecutive days. Cognitive changes were assessed by transfer latency (TL) using the elevated plus maze (EPM) test. The changes in acetylcholinesterase (AChE) activity were estimated in the septohippocampal system of rat brains. The administration of STZ caused significant changes in cognitive functions (increased TL) as compared to the normal group. BC ameliorated the anxiety-related cognitive behavior and neurotransmitter (elevated AChE) changes provoked by diabetic VaD. Therefore, BC could be a potential therapeutic candidate in the management of VaD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.